Spaces:
Runtime error
Runtime error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import argparse | |
import warnings | |
from dataclasses import dataclass, field | |
from typing import Optional, Tuple | |
import pyrallis | |
import torch | |
import torch.nn as nn | |
warnings.filterwarnings("ignore") # ignore warning | |
from diffusion import DPMS, FlowEuler | |
from diffusion.data.datasets.utils import ( | |
ASPECT_RATIO_512_TEST, | |
ASPECT_RATIO_1024_TEST, | |
ASPECT_RATIO_2048_TEST, | |
ASPECT_RATIO_4096_TEST, | |
) | |
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode | |
from diffusion.model.utils import get_weight_dtype, prepare_prompt_ar, resize_and_crop_tensor | |
from diffusion.utils.config import SanaConfig, model_init_config | |
from diffusion.utils.logger import get_root_logger | |
# from diffusion.utils.misc import read_config | |
from tools.download import find_model | |
def guidance_type_select(default_guidance_type, pag_scale, attn_type): | |
guidance_type = default_guidance_type | |
if not (pag_scale > 1.0 and attn_type == "linear"): | |
guidance_type = "classifier-free" | |
elif pag_scale > 1.0 and attn_type == "linear": | |
guidance_type = "classifier-free_PAG" | |
return guidance_type | |
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: | |
"""Returns binned height and width.""" | |
ar = float(height / width) | |
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) | |
default_hw = ratios[closest_ratio] | |
return int(default_hw[0]), int(default_hw[1]) | |
class SanaInference(SanaConfig): | |
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml" # config | |
model_path: str = field( | |
default="output/Sana_D20/SANA.pth", metadata={"help": "Path to the model file (positional)"} | |
) | |
output: str = "./output" | |
bs: int = 1 | |
image_size: int = 1024 | |
cfg_scale: float = 5.0 | |
pag_scale: float = 2.0 | |
seed: int = 42 | |
step: int = -1 | |
custom_image_size: Optional[int] = None | |
shield_model_path: str = field( | |
default="google/shieldgemma-2b", | |
metadata={"help": "The path to shield model, we employ ShieldGemma-2B by default."}, | |
) | |
class SanaPipeline(nn.Module): | |
def __init__( | |
self, | |
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml", | |
): | |
super().__init__() | |
config = pyrallis.load(SanaInference, open(config)) | |
self.args = self.config = config | |
# set some hyper-parameters | |
self.image_size = self.config.model.image_size | |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
logger = get_root_logger() | |
self.logger = logger | |
self.progress_fn = lambda progress, desc: None | |
self.latent_size = self.image_size // config.vae.vae_downsample_rate | |
self.max_sequence_length = config.text_encoder.model_max_length | |
self.flow_shift = config.scheduler.flow_shift | |
guidance_type = "classifier-free_PAG" | |
weight_dtype = get_weight_dtype(config.model.mixed_precision) | |
self.weight_dtype = weight_dtype | |
self.vae_dtype = get_weight_dtype(config.vae.weight_dtype) | |
self.base_ratios = eval(f"ASPECT_RATIO_{self.image_size}_TEST") | |
self.vis_sampler = self.config.scheduler.vis_sampler | |
logger.info(f"Sampler {self.vis_sampler}, flow_shift: {self.flow_shift}") | |
self.guidance_type = guidance_type_select(guidance_type, self.args.pag_scale, config.model.attn_type) | |
logger.info(f"Inference with {self.weight_dtype}, PAG guidance layer: {self.config.model.pag_applied_layers}") | |
# 1. build vae and text encoder | |
self.vae = self.build_vae(config.vae) | |
self.tokenizer, self.text_encoder = self.build_text_encoder(config.text_encoder) | |
# 2. build Sana model | |
self.model = self.build_sana_model(config).to(self.device) | |
# 3. pre-compute null embedding | |
with torch.no_grad(): | |
null_caption_token = self.tokenizer( | |
"", max_length=self.max_sequence_length, padding="max_length", truncation=True, return_tensors="pt" | |
).to(self.device) | |
self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[ | |
0 | |
] | |
def build_vae(self, config): | |
vae = get_vae(config.vae_type, config.vae_pretrained, self.device).to(self.vae_dtype) | |
return vae | |
def build_text_encoder(self, config): | |
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder_name, device=self.device) | |
return tokenizer, text_encoder | |
def build_sana_model(self, config): | |
# model setting | |
model_kwargs = model_init_config(config, latent_size=self.latent_size) | |
model = build_model( | |
config.model.model, | |
use_fp32_attention=config.model.get("fp32_attention", False) and config.model.mixed_precision != "bf16", | |
**model_kwargs, | |
) | |
self.logger.info(f"use_fp32_attention: {model.fp32_attention}") | |
self.logger.info( | |
f"{model.__class__.__name__}:{config.model.model}," | |
f"Model Parameters: {sum(p.numel() for p in model.parameters()):,}" | |
) | |
return model | |
def from_pretrained(self, model_path): | |
state_dict = find_model(model_path) | |
state_dict = state_dict.get("state_dict", state_dict) | |
if "pos_embed" in state_dict: | |
del state_dict["pos_embed"] | |
missing, unexpected = self.model.load_state_dict(state_dict, strict=False) | |
self.model.eval().to(self.weight_dtype) | |
self.logger.info("Generating sample from ckpt: %s" % model_path) | |
self.logger.warning(f"Missing keys: {missing}") | |
self.logger.warning(f"Unexpected keys: {unexpected}") | |
def register_progress_bar(self, progress_fn=None): | |
self.progress_fn = progress_fn if progress_fn is not None else self.progress_fn | |
def forward( | |
self, | |
prompt=None, | |
height=1024, | |
width=1024, | |
negative_prompt="", | |
num_inference_steps=20, | |
guidance_scale=5, | |
pag_guidance_scale=2.5, | |
num_images_per_prompt=1, | |
generator=torch.Generator().manual_seed(42), | |
latents=None, | |
): | |
self.ori_height, self.ori_width = height, width | |
self.height, self.width = classify_height_width_bin(height, width, ratios=self.base_ratios) | |
self.latent_size_h, self.latent_size_w = ( | |
self.height // self.config.vae.vae_downsample_rate, | |
self.width // self.config.vae.vae_downsample_rate, | |
) | |
self.guidance_type = guidance_type_select(self.guidance_type, pag_guidance_scale, self.config.model.attn_type) | |
# 1. pre-compute negative embedding | |
if negative_prompt != "": | |
null_caption_token = self.tokenizer( | |
negative_prompt, | |
max_length=self.max_sequence_length, | |
padding="max_length", | |
truncation=True, | |
return_tensors="pt", | |
).to(self.device) | |
self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[ | |
0 | |
] | |
if prompt is None: | |
prompt = [""] | |
prompts = prompt if isinstance(prompt, list) else [prompt] | |
samples = [] | |
for prompt in prompts: | |
# data prepare | |
prompts, hw, ar = ( | |
[], | |
torch.tensor([[self.image_size, self.image_size]], dtype=torch.float, device=self.device).repeat( | |
num_images_per_prompt, 1 | |
), | |
torch.tensor([[1.0]], device=self.device).repeat(num_images_per_prompt, 1), | |
) | |
for _ in range(num_images_per_prompt): | |
prompts.append(prepare_prompt_ar(prompt, self.base_ratios, device=self.device, show=False)[0].strip()) | |
with torch.no_grad(): | |
# prepare text feature | |
if not self.config.text_encoder.chi_prompt: | |
max_length_all = self.config.text_encoder.model_max_length | |
prompts_all = prompts | |
else: | |
chi_prompt = "\n".join(self.config.text_encoder.chi_prompt) | |
prompts_all = [chi_prompt + prompt for prompt in prompts] | |
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt)) | |
max_length_all = ( | |
num_chi_prompt_tokens + self.config.text_encoder.model_max_length - 2 | |
) # magic number 2: [bos], [_] | |
caption_token = self.tokenizer( | |
prompts_all, | |
max_length=max_length_all, | |
padding="max_length", | |
truncation=True, | |
return_tensors="pt", | |
).to(device=self.device) | |
select_index = [0] + list(range(-self.config.text_encoder.model_max_length + 1, 0)) | |
caption_embs = self.text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][ | |
:, :, select_index | |
].to(self.weight_dtype) | |
emb_masks = caption_token.attention_mask[:, select_index] | |
null_y = self.null_caption_embs.repeat(len(prompts), 1, 1)[:, None].to(self.weight_dtype) | |
n = len(prompts) | |
if latents is None: | |
z = torch.randn( | |
n, | |
self.config.vae.vae_latent_dim, | |
self.latent_size_h, | |
self.latent_size_w, | |
generator=generator, | |
device=self.device, | |
) | |
else: | |
z = latents.to(self.device) | |
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks) | |
if self.vis_sampler == "flow_euler": | |
flow_solver = FlowEuler( | |
self.model, | |
condition=caption_embs, | |
uncondition=null_y, | |
cfg_scale=guidance_scale, | |
model_kwargs=model_kwargs, | |
) | |
sample = flow_solver.sample( | |
z, | |
steps=num_inference_steps, | |
) | |
elif self.vis_sampler == "flow_dpm-solver": | |
scheduler = DPMS( | |
self.model, | |
condition=caption_embs, | |
uncondition=null_y, | |
guidance_type=self.guidance_type, | |
cfg_scale=guidance_scale, | |
pag_scale=pag_guidance_scale, | |
pag_applied_layers=self.config.model.pag_applied_layers, | |
model_type="flow", | |
model_kwargs=model_kwargs, | |
schedule="FLOW", | |
) | |
scheduler.register_progress_bar(self.progress_fn) | |
sample = scheduler.sample( | |
z, | |
steps=num_inference_steps, | |
order=2, | |
skip_type="time_uniform_flow", | |
method="multistep", | |
flow_shift=self.flow_shift, | |
) | |
sample = sample.to(self.vae_dtype) | |
with torch.no_grad(): | |
sample = vae_decode(self.config.vae.vae_type, self.vae, sample) | |
sample = resize_and_crop_tensor(sample, self.ori_width, self.ori_height) | |
samples.append(sample) | |
return sample | |
return samples | |