Spaces:
Runtime error
Runtime error
File size: 12,212 Bytes
f1f9265 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# Changed from https://github.com/GaParmar/img2img-turbo/blob/main/gradio_sketch2image.py
import argparse
import os
import random
import socket
import tempfile
import time
import gradio as gr
import numpy as np
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
from app import safety_check
from app.sana_controlnet_pipeline import SanaControlNetPipeline
STYLES = {
"None": "{prompt}",
"Cinematic": "cinematic still {prompt}. emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"3D Model": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
"Anime": "anime artwork {prompt}. anime style, key visual, vibrant, studio anime, highly detailed",
"Digital Art": "concept art {prompt}. digital artwork, illustrative, painterly, matte painting, highly detailed",
"Photographic": "cinematic photo {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"Pixel art": "pixel-art {prompt}. low-res, blocky, pixel art style, 8-bit graphics",
"Fantasy art": "ethereal fantasy concept art of {prompt}. magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"Neonpunk": "neonpunk style {prompt}. cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"Manga": "manga style {prompt}. vibrant, high-energy, detailed, iconic, Japanese comic style",
}
DEFAULT_STYLE_NAME = "None"
STYLE_NAMES = list(STYLES.keys())
MAX_SEED = 1000000000
DEFAULT_SKETCH_GUIDANCE = 0.28
DEMO_PORT = int(os.getenv("DEMO_PORT", "15432"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
blank_image = Image.new("RGB", (1024, 1024), (255, 255, 255))
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="config")
parser.add_argument(
"--model_path",
nargs="?",
default="hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth",
type=str,
help="Path to the model file (positional)",
)
parser.add_argument("--output", default="./", type=str)
parser.add_argument("--bs", default=1, type=int)
parser.add_argument("--image_size", default=1024, type=int)
parser.add_argument("--cfg_scale", default=5.0, type=float)
parser.add_argument("--pag_scale", default=2.0, type=float)
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--step", default=-1, type=int)
parser.add_argument("--custom_image_size", default=None, type=int)
parser.add_argument("--share", action="store_true")
parser.add_argument(
"--shield_model_path",
type=str,
help="The path to shield model, we employ ShieldGemma-2B by default.",
default="google/shieldgemma-2b",
)
return parser.parse_known_args()[0]
args = get_args()
if torch.cuda.is_available():
model_path = args.model_path
pipe = SanaControlNetPipeline(args.config)
pipe.from_pretrained(model_path)
pipe.register_progress_bar(gr.Progress())
# safety checker
safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path)
safety_checker_model = AutoModelForCausalLM.from_pretrained(
args.shield_model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
).to(device)
def save_image(img):
if isinstance(img, dict):
img = img["composite"]
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
img.save(temp_file.name)
return temp_file.name
def norm_ip(img, low, high):
img.clamp_(min=low, max=high)
img.sub_(low).div_(max(high - low, 1e-5))
return img
@torch.no_grad()
@torch.inference_mode()
def run(
image,
prompt: str,
prompt_template: str,
sketch_thickness: int,
guidance_scale: float,
inference_steps: int,
seed: int,
blend_alpha: float,
) -> tuple[Image, str]:
print(f"Prompt: {prompt}")
image_numpy = np.array(image["composite"].convert("RGB"))
if prompt.strip() == "" and (np.sum(image_numpy == 255) >= 3145628 or np.sum(image_numpy == 0) >= 3145628):
return blank_image, "Please input the prompt or draw something."
if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt, threshold=0.2):
prompt = "A red heart."
prompt = prompt_template.format(prompt=prompt)
pipe.set_blend_alpha(blend_alpha)
start_time = time.time()
images = pipe(
prompt=prompt,
ref_image=image["composite"],
guidance_scale=guidance_scale,
num_inference_steps=inference_steps,
num_images_per_prompt=1,
sketch_thickness=sketch_thickness,
generator=torch.Generator(device=device).manual_seed(seed),
)
latency = time.time() - start_time
if latency < 1:
latency = latency * 1000
latency_str = f"{latency:.2f}ms"
else:
latency_str = f"{latency:.2f}s"
torch.cuda.empty_cache()
img = [
Image.fromarray(
norm_ip(img, -1, 1)
.mul(255)
.add_(0.5)
.clamp_(0, 255)
.permute(1, 2, 0)
.to("cpu", torch.uint8)
.numpy()
.astype(np.uint8)
)
for img in images
]
img = img[0]
return img, latency_str
model_size = "1.6" if "1600M" in args.model_path else "0.6"
title = f"""
<div style='display: flex; align-items: center; justify-content: center; text-align: center;'>
<img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="50%" alt="logo"/>
</div>
"""
DESCRIPTION = f"""
<p><span style="font-size: 36px; font-weight: bold;">Sana-ControlNet-{model_size}B</span><span style="font-size: 20px; font-weight: bold;">{args.image_size}px</span></p>
<p style="font-size: 18px; font-weight: bold;">Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer</p>
<p><span style="font-size: 16px;"><a href="https://arxiv.org/abs/2410.10629">[Paper]</a></span> <span style="font-size: 16px;"><a href="https://github.com/NVlabs/Sana">[Github]</a></span> <span style="font-size: 16px;"><a href="https://nvlabs.github.io/Sana">[Project]</a></span</p>
<p style="font-size: 18px; font-weight: bold;">Powered by <a href="https://hanlab.mit.edu/projects/dc-ae">DC-AE</a> with 32x latent space, </p>running on node {socket.gethostname()}.
<p style="font-size: 16px; font-weight: bold;">Unsafe word will give you a 'Red Heart' in the image instead.</p>
"""
if model_size == "0.6":
DESCRIPTION += "\n<p>0.6B model's text rendering ability is limited.</p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
with gr.Blocks(css_paths="asset/app_styles/controlnet_app_style.css", title=f"Sana Sketch-to-Image Demo") as demo:
gr.Markdown(title)
gr.HTML(DESCRIPTION)
with gr.Row(elem_id="main_row"):
with gr.Column(elem_id="column_input"):
gr.Markdown("## INPUT", elem_id="input_header")
with gr.Group():
canvas = gr.Sketchpad(
value=blank_image,
height=640,
image_mode="RGB",
sources=["upload", "clipboard"],
type="pil",
label="Sketch",
show_label=False,
show_download_button=True,
interactive=True,
transforms=[],
canvas_size=(1024, 1024),
scale=1,
brush=gr.Brush(default_size=3, colors=["#000000"], color_mode="fixed"),
format="png",
layers=False,
)
with gr.Row():
prompt = gr.Text(label="Prompt", placeholder="Enter your prompt", scale=6)
run_button = gr.Button("Run", scale=1, elem_id="run_button")
download_sketch = gr.DownloadButton("Download Sketch", scale=1, elem_id="download_sketch")
with gr.Row():
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1)
prompt_template = gr.Textbox(
label="Prompt Style Template", value=STYLES[DEFAULT_STYLE_NAME], scale=2, max_lines=1
)
with gr.Row():
sketch_thickness = gr.Slider(
label="Sketch Thickness",
minimum=1,
maximum=4,
step=1,
value=2,
)
with gr.Row():
inference_steps = gr.Slider(
label="Sampling steps",
minimum=5,
maximum=40,
step=1,
value=20,
)
guidance_scale = gr.Slider(
label="CFG Guidance scale",
minimum=1,
maximum=10,
step=0.1,
value=4.5,
)
blend_alpha = gr.Slider(
label="Blend Alpha",
minimum=0,
maximum=1,
step=0.1,
value=0,
)
with gr.Row():
seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4)
randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed")
with gr.Column(elem_id="column_output"):
gr.Markdown("## OUTPUT", elem_id="output_header")
with gr.Group():
result = gr.Image(
format="png",
height=640,
image_mode="RGB",
type="pil",
label="Result",
show_label=False,
show_download_button=True,
interactive=False,
elem_id="output_image",
)
latency_result = gr.Text(label="Inference Latency", show_label=True)
download_result = gr.DownloadButton("Download Result", elem_id="download_result")
gr.Markdown("### Instructions")
gr.Markdown("**1**. Enter a text prompt (e.g. a cat)")
gr.Markdown("**2**. Start sketching or upload a reference image")
gr.Markdown("**3**. Change the image style using a style template")
gr.Markdown("**4**. Try different seeds to generate different results")
run_inputs = [canvas, prompt, prompt_template, sketch_thickness, guidance_scale, inference_steps, seed, blend_alpha]
run_outputs = [result, latency_result]
randomize_seed.click(
lambda: random.randint(0, MAX_SEED),
inputs=[],
outputs=seed,
api_name=False,
queue=False,
).then(run, inputs=run_inputs, outputs=run_outputs, api_name=False)
style.change(
lambda x: STYLES[x],
inputs=[style],
outputs=[prompt_template],
api_name=False,
queue=False,
).then(fn=run, inputs=run_inputs, outputs=run_outputs, api_name=False)
gr.on(
triggers=[prompt.submit, run_button.click, canvas.change],
fn=run,
inputs=run_inputs,
outputs=run_outputs,
api_name=False,
)
download_sketch.click(fn=save_image, inputs=canvas, outputs=download_sketch)
download_result.click(fn=save_image, inputs=result, outputs=download_result)
gr.Markdown("MIT Accessibility: https://accessibility.mit.edu/", elem_id="accessibility")
if __name__ == "__main__":
demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=DEMO_PORT, debug=False, share=args.share)
|