import gradio as gr import torch from diffusers import StableDiffusionControlNetPipeline, ControlNetModel from PIL import Image import numpy as np import cv2 from rembg import remove # Загрузка моделей controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble") pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, # torch_dtype=torch.float16 ).to("cuda") def generate_background(image_path, prompt, negative_prompt): # Удаление фона image = Image.open(image_path).convert("RGBA") output_image = remove(image) # Преобразование изображения объекта в контурное изображение foreground = output_image.convert("L") _, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY) contour_image = Image.fromarray(contour) # Генерация фона generator = torch.Generator(device="cuda").manual_seed(1024) result = pipe( prompt=prompt, negative_prompt=negative_prompt, image=contour_image, generator=generator, num_inference_steps=50 ) background = result.images[0].convert("RGBA") # Изменение размера фона до размера переднего плана background = background.resize(output_image.size) # Наложение изображений composite = Image.alpha_composite(background, output_image) return composite # Определение интерфейса Gradio iface = gr.Interface( fn=generate_background, inputs=[ gr.Image(type="filepath", label="Загрузите изображение"), gr.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"), gr.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт") ], outputs=gr.Image(type="pil", label="Результат") ) # Запуск интерфейса iface.launch() # import gradio as gr # import numpy as np # import random # from diffusers import DiffusionPipeline # import torch # device = "cuda" if torch.cuda.is_available() else "cpu" # if torch.cuda.is_available(): # torch.cuda.max_memory_allocated(device=device) # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) # pipe.enable_xformers_memory_efficient_attention() # pipe = pipe.to(device) # else: # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) # pipe = pipe.to(device) # MAX_SEED = np.iinfo(np.int32).max # MAX_IMAGE_SIZE = 1024 # def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): # if randomize_seed: # seed = random.randint(0, MAX_SEED) # generator = torch.Generator().manual_seed(seed) # image = pipe( # prompt = prompt, # negative_prompt = negative_prompt, # guidance_scale = guidance_scale, # num_inference_steps = num_inference_steps, # width = width, # height = height, # generator = generator # ).images[0] # return image # examples = [ # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", # "An astronaut riding a green horse", # "A delicious ceviche cheesecake slice", # ] # css=""" # #col-container { # margin: 0 auto; # max-width: 520px; # } # """ # if torch.cuda.is_available(): # power_device = "GPU" # else: # power_device = "CPU" # with gr.Blocks(css=css) as demo: # with gr.Column(elem_id="col-container"): # gr.Markdown(f""" # # Text-to-Image Gradio Template # Currently running on {power_device}. # """) # with gr.Row(): # prompt = gr.Text( # label="Prompt", # show_label=False, # max_lines=1, # placeholder="Enter your prompt", # container=False, # ) # run_button = gr.Button("Run", scale=0) # result = gr.Image(label="Result", show_label=False) # with gr.Accordion("Advanced Settings", open=False): # negative_prompt = gr.Text( # label="Negative prompt", # max_lines=1, # placeholder="Enter a negative prompt", # visible=False, # ) # seed = gr.Slider( # label="Seed", # minimum=0, # maximum=MAX_SEED, # step=1, # value=0, # ) # randomize_seed = gr.Checkbox(label="Randomize seed", value=True) # with gr.Row(): # width = gr.Slider( # label="Width", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=512, # ) # height = gr.Slider( # label="Height", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=512, # ) # with gr.Row(): # guidance_scale = gr.Slider( # label="Guidance scale", # minimum=0.0, # maximum=10.0, # step=0.1, # value=0.0, # ) # num_inference_steps = gr.Slider( # label="Number of inference steps", # minimum=1, # maximum=12, # step=1, # value=2, # ) # gr.Examples( # examples = examples, # inputs = [prompt] # ) # run_button.click( # fn = infer, # inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # outputs = [result] # ) # demo.queue().launch()