import gradio as gr from PIL import Image, ImageDraw, ImageChops, ImageColor from haishoku.haishoku import Haishoku import os from tempfile import NamedTemporaryFile from pathlib import Path import atexit import random import spaces # Import constants import utils.constants as constants IS_SHARED_SPACE = constants.IS_SHARED_SPACE # Import functions from modules from utils.file_utils import cleanup_temp_files from utils.color_utils import ( rgb_to_hex, hex_to_rgb, detect_color_format, update_color_opacity, ) from utils.misc import (get_filename, pause, convert_ratio_to_dimensions) from utils.depth_estimation import estimate_depth, create_3d_model, generate_depth_and_3d, generate_depth_button_click from utils.image_utils import ( change_color, open_image, build_prerendered_images, upscale_image, lerp_imagemath, shrink_and_paste_on_blank, show_lut, apply_lut_to_image_path, multiply_and_blend_images, alpha_composite_with_control ) from utils.hex_grid import ( generate_hexagon_grid, generate_hexagon_grid_interface, ) from utils.excluded_colors import ( add_color, delete_color, build_dataframe, on_input, excluded_color_list, on_color_display_select ) from utils.ai_generator import ( generate_ai_image, ) from utils.version_info import ( versions_html, get_torch_info ) from utils.lora_details import ( upd_prompt_notes ) input_image_palette = [] current_prerendered_image = gr.State("./images/images/Beeuty-1.png") # Register the cleanup function atexit.register(cleanup_temp_files) def hex_create(hex_size, border_size, input_image_path, start_x, start_y, end_x, end_y, rotation, background_color_hex, background_opacity, border_color_hex, border_opacity, fill_hex, excluded_colors_var, filter_color, x_spacing, y_spacing, add_hex_text_option=None, custom_text_list=None, custom_text_color_list=None): global input_image_palette try: # Load and process the input image input_image = Image.open(input_image_path).convert("RGBA") except Exception as e: print(f"Failed to convert image to RGBA: {e}") # Open the original image without conversion input_image = Image.open(input_image_path) # Ensure the canvas is at least 1344x768 pixels min_width, min_height = 1344, 768 canvas_width = max(min_width, input_image.width) canvas_height = max(min_height, input_image.height) # Create a transparent canvas with the required dimensions new_canvas = Image.new("RGBA", (canvas_width, canvas_height), (0, 0, 0, 0)) # Calculate position to center the input image on the canvas paste_x = (canvas_width - input_image.width) // 2 paste_y = (canvas_height - input_image.height) // 2 # Paste the input image onto the canvas new_canvas.paste(input_image, (paste_x, paste_y)) # Save the 'RGBA' image to a temporary file and update 'input_image_path' with NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: new_canvas.save(tmp_file.name, format="PNG") input_image_path = tmp_file.name constants.temp_files.append(tmp_file.name) # Update 'input_image' with the new image as a file path input_image = Image.open(input_image_path) # Use Haishoku to get the palette from the new image input_palette = Haishoku.loadHaishoku(input_image_path) input_image_palette = input_palette.palette # Update colors with opacity background_color = update_color_opacity( hex_to_rgb(background_color_hex), int(background_opacity * (255 / 100)) ) border_color = update_color_opacity( hex_to_rgb(border_color_hex), int(border_opacity * (255 / 100)) ) # Prepare excluded colors list excluded_color_list = [tuple(lst) for lst in excluded_colors_var] # Generate the hexagon grid images grid_image = generate_hexagon_grid_interface( hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, border_color, fill_hex, excluded_color_list, filter_color, x_spacing, y_spacing, add_hex_text_option, custom_text_list, custom_text_color_list ) return grid_image def get_model_and_lora(model_textbox): """ Determines the model and LoRA weights based on the model_textbox input. wieghts must be in an array ["Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"] """ # If the input is in the list of models, return it with None as LoRA weights if model_textbox in constants.MODELS: return model_textbox, [] # If the input is in the list of LoRA weights, get the corresponding model elif model_textbox in constants.LORA_WEIGHTS: model = constants.LORA_TO_MODEL.get(model_textbox) return model, model_textbox.split() else: # Default to a known model if input is unrecognized default_model = model_textbox return default_model, [] #@spaces.GPU(duration=256) def generate_input_image_click(map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=3): # Get the model and LoRA weights model, lora_weights = get_model_and_lora(model_textbox_value) global current_prerendered_image conditioned_image=None if use_conditioned_image: print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n") # ensure the conditioned image is an image and not a string, cannot use RGBA if isinstance(current_prerendered_image.value, str): conditioned_image = open_image(current_prerendered_image.value).convert("RGB") print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n") # Convert image_format from a string split by ":" into two numbers divided width_ratio, height_ratio = map(int, image_format.split(":")) aspect_ratio = width_ratio / height_ratio width, height = convert_ratio_to_dimensions(aspect_ratio, 512) # Generate the AI image and get the image path image_path = generate_ai_image( map_option, prompt_textbox_value, negative_prompt_textbox_value, model, lora_weights, conditioned_image, stength=strength, height=height, width=width ) # Open the generated image try: image = Image.open(image_path).convert("RGBA") except Exception as e: print(f"Failed to open generated image: {e}") return image_path # Return the original image path if opening fails # Upscale the image upscaled_image = upscale_image(image, scale_factor) # Save the upscaled image to a temporary file with NamedTemporaryFile(delete=False, suffix=".png") as tmp_upscaled: upscaled_image.save(tmp_upscaled.name, format="PNG") constants.temp_files.append(tmp_upscaled.name) print(f"Upscaled image saved to {tmp_upscaled.name}") # Return the path of the upscaled image return tmp_upscaled.name def update_prompt_visibility(map_option): is_visible = (map_option == "Prompt") return ( gr.update(visible=is_visible), gr.update(visible=is_visible), gr.update(visible=is_visible) ) def update_prompt_notes(model_textbox_value): return upd_prompt_notes(model_textbox_value) def on_prerendered_gallery_selection(event_data: gr.SelectData): global current_prerendered_image selected_index = event_data.index selected_image = constants.pre_rendered_maps_paths[selected_index] print(f"Gallery Image Selected: {selected_image}\n") current_prerendered_image.value = selected_image return current_prerendered_image def combine_images_with_lerp(input_image, output_image, alpha): in_image = open_image(input_image) out_image = open_image(output_image) print(f"Combining images with alpha: {alpha}") return lerp_imagemath(in_image, out_image, alpha) def add_border(image, mask_width, mask_height, blank_color): bordered_image_output = Image.open(image).convert("RGBA") margin_color = detect_color_format(blank_color) print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}") return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color) title = "HexaGrid Creator" description = "Customizable Hexagon Grid Image Generator" examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]] gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/"]) # Gradio Blocks Interface with gr.Blocks(css_paths="style_20250128.css", title="HexaGrid Creator", theme='Surn/beeuty') as beeuty: with gr.Row(): gr.Markdown (""" # HexaGrid Creator ## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢
Welcome to HexaGrid Creator, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you. ## Drop an image into the Input Image and get started! ## What is HexaGrid Creator? HexaGrid Creator is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles! ### What Can You Do? - **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters. - **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them. - **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look. - **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time. - **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization. - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. - **Add Margins:** Add customizable margins around your images for a polished finish. ### Why You'll Love It - **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun! - **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways. - **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢ - **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization. ### Get Started 1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool. 2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay. 3. **Download and Share:** Once you're happy with your creation, download it and share it with the world! ### Advanced Features - **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images. - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. - **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization. - **Add Margins:** Customize margins around your images for a polished finish. Join the hive and start creating with HexaGrid Creator today!
""", elem_classes="intro") with gr.Row(): with gr.Column(scale=2): input_image = gr.Image( label="Input Image", type="filepath", interactive=True, elem_classes="centered solid imgcontainer", key="imgInput", image_mode="RGBA", format="PNG" ) with gr.Column(): with gr.Accordion("Hex Coloring and Exclusion", open = False): with gr.Row(): with gr.Column(): color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050") with gr.Column(): filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,) exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid") color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered") selected_row = gr.Number(0, label="Selected Row", visible=False) delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid") fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True) with gr.Accordion("Image Filters", open = False): with gr.Row(): with gr.Column(): composite_color = gr.ColorPicker(label="Color", value="#ede9ac44") with gr.Column(): composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True) with gr.Row(): composite_button = gr.Button("Composite", elem_classes="solid") with gr.Row(): with gr.Column(): lut_filename = gr.Textbox( value="", label="Look Up Table (LUT) File Name", elem_id="lutFileName") with gr.Column(): lut_file = gr.File( value=None, file_count="single", file_types=[".cube"], type="filepath", label="LUT cube File") with gr.Row(): lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=constants.default_lut_example_img) with gr.Row(): with gr.Column(): gr.Markdown(""" ### Included Filters (LUTs) There are several included Filters: Try them on the example image before applying to your Input Image. """, elem_id="lut_markdown") with gr.Column(): gr.Examples(elem_id="lut_examples", examples=[[f] for f in constants.lut_files], inputs=[lut_filename], outputs=[lut_filename], label="Select a Filter (LUT) file. Populate the LUT File Name field" ) with gr.Row(): apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button") lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename]) lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image]) apply_lut_button.click(apply_lut_to_image_path, inputs=[lut_filename, input_image], outputs=[input_image],scroll_to_output=True) with gr.Row(): with gr.Accordion("Generative AI", open = False): with gr.Row(): with gr.Column(): model_options = gr.Dropdown( label="Model Options", choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"], value="Cossale/Frames2-Flex.1", elem_classes="solid" ) model_textbox = gr.Textbox( label="LORA/Model", value="Cossale/Frames2-Flex.1", elem_classes="solid", elem_id="inference_model", visible=False ) # Update map_options to a Dropdown with choices from constants.PROMPTS keys with gr.Row(): with gr.Column(): map_options = gr.Dropdown( label="Map Options", choices=list(constants.PROMPTS.keys()), value="Alien Landscape", elem_classes="solid" ) with gr.Column(): # Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1 # The values of height and width are based on common resolutions for each aspect ratio # Default to 16x9, 912x512 image_size_ratio = gr.Dropdown(label="Image Size", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value",interactive=True) prompt_textbox = gr.Textbox( label="Prompt", visible=False, elem_classes="solid", value="top-down, (tabletop_map built from small hexagon pieces) hexagon map of a Battletech_boardgame forest with lakes, forest, magic fauna, and snow at the top and bottom, (middle is dark, no_reflections, no_shadows) , tall and short hexagon tiles. Viewed from above.", lines=4 ) negative_prompt_textbox = gr.Textbox( label="Negative Prompt", visible=False, elem_classes="solid", value="low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text" ) prompt_notes_label = gr.Label( "You should use FRM$ as trigger words. @1.5 minutes", elem_classes="solid centered small", show_label=False, visible=False ) # Keep the change event to maintain functionality map_options.change( fn=update_prompt_visibility, inputs=[map_options], outputs=[prompt_textbox, negative_prompt_textbox, prompt_notes_label] ) with gr.Row(): generate_input_image = gr.Button( "Generate AI Image", elem_id="generate_input_image", elem_classes="solid" ) with gr.Column(scale=2): with gr.Accordion("Template Image Styles", open = False): with gr.Row(): # Gallery from PRE_RENDERED_IMAGES GOES HERE prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images(constants.pre_rendered_maps_paths), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto",file_types=["image"], format="png",allow_preview=False) with gr.Row(): image_guidance_stength = gr.Slider(label="Image Guidance Strength", minimum=0, maximum=1.0, value=0.5, step=0.05, interactive=True) with gr.Column(): replace_input_image_button = gr.Button( "Replace Input Image", elem_id="prerendered_replace_input_image_button", elem_classes="solid" ) with gr.Column(): generate_input_image_from_gallery = gr.Button( "Generate AI Image from Gallery", elem_id="generate_input_image_from_gallery", elem_classes="solid" ) with gr.Accordion("Advanced Hexagon Settings", open = False): with gr.Row(): start_x = gr.Number(label="Start X", value=0, minimum=-512, maximum= 512, precision=0) start_y = gr.Number(label="Start Y", value=0, minimum=-512, maximum= 512, precision=0) end_x = gr.Number(label="End X", value=0, minimum=-512, maximum= 512, precision=0) end_y = gr.Number(label="End Y", value=0, minimum=-512, maximum= 512, precision=0) with gr.Row(): x_spacing = gr.Number(label="Adjust Horizontal spacing", value=-1, minimum=-200, maximum=200, precision=1) y_spacing = gr.Number(label="Adjust Vertical spacing", value=1, minimum=-200, maximum=200, precision=1) with gr.Row(): rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)") add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None) with gr.Row(): custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,) custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False) with gr.Row(): hex_text_info = gr.Markdown(""" ### Text Color uses the Border Color and Border Opacity, unless you use a custom list. ### The Custom Text List and Custom Text Color List are comma separated lists. ### The custom color list is a comma separated list of hex colors. #### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue" """, elem_id="hex_text_info", visible=False) add_hex_text.change( fn=lambda x: ( gr.update(visible=(x == "Custom List")), gr.update(visible=(x == "Custom List")), gr.update(visible=(x != None)) ), inputs=add_hex_text, outputs=[custom_text_list, custom_text_color_list, hex_text_info] ) with gr.Row(): hex_size = gr.Number(label="Hexagon Size", value=32, minimum=1, maximum=768) border_size = gr.Slider(-5,25,value=0,step=1,label="Border Size") with gr.Row(): rotation = gr.Slider(-90, 180, 0.0, 0.1, label="deg. Rotation") background_color = gr.ColorPicker(label="Background Color", value="#000000", interactive=True) background_opacity = gr.Slider(0,100,0,1,label="Background Opacity %") border_color = gr.ColorPicker(label="Border Color", value="#7b7b7b", interactive=True) border_opacity = gr.Slider(0,100,0,1,label="Border Opacity %") with gr.Row(): hex_button = gr.Button("Generate Hex Grid!", elem_classes="solid", elem_id="btn-generate") with gr.Row(): output_image = gr.Image(label="Hexagon Grid Image", image_mode = "RGBA", show_download_button=True, show_share_button=True,elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOutput") overlay_image = gr.Image(label="Hexagon Overlay Image", image_mode = "RGBA", show_share_button=True, elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOverlay") with gr.Row(): output_overlay_composite = gr.Slider(0,100,50,0.5, label="Interpolate Intensity") output_blend_multiply_composite = gr.Slider(0,100,50,0.5, label="Overlay Intensity") output_alpha_composite = gr.Slider(0,100,50,0.5, label="Alpha Composite Intensity") with gr.Accordion("Add Margins (bleed)", open=False): with gr.Row(): border_image_source = gr.Radio(label="Add Margins around which Image", choices=["Input Image", "Overlay Image"], value="Overlay Image") with gr.Row(): mask_width = gr.Number(label="Margins Width", value=10, minimum=0, maximum=100, precision=0) mask_height = gr.Number(label="Margins Height", value=10, minimum=0, maximum=100, precision=0) with gr.Row(): margin_color = gr.ColorPicker(label="Margin Color", value="#333333FF", interactive=True) margin_opacity = gr.Slider(0,100,95,0.5,label="Margin Opacity %") with gr.Row(): add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary") with gr.Row(): bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", show_download_button=True, show_share_button=True, elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered") with gr.Accordion("Height Maps and 3D", open = False): with gr.Row(): with gr.Column(): voxel_size_factor = gr.Slider(label="Voxel Size Factor", value=1.00, minimum=0.01, maximum=40.00, step=0.01) with gr.Column(): depth_image_source = gr.Radio(label="Depth Image Source", choices=["Input Image", "Output Image", "Overlay Image","Image with Margins"], value="Input Image") with gr.Row(): generate_depth_button = gr.Button("Generate Depth Map and 3D Model From Selected Image", elem_classes="solid", variant="secondary") with gr.Row(): depth_map_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgDepth") model_output = gr.Model3D(label="3D Model", clear_color=[1.0, 1.0, 1.0, 0.25], key="Img3D", elem_classes="centered solid imgcontainer") with gr.Row(): gr.Examples(examples=[ ["assets//examples//hex_map_p1.png", False, True, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 15], ["assets//examples//hex_map_p1_overlayed.png", False, False, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 75], ["assets//examples//hex_flower_logo.png", False, True, -95,-95,100,100,-24,-2,190,30,2,"#FF8951", 50], ["assets//examples//hexed_fract_1.png", False, True, 0,0,0,0,0,0,10,0,0,"#000000", 5], ["assets//examples//tmpzt3mblvk.png", False, True, -20,10,0,0,-6,-2,35,30,1,"#ffffff", 0], ], inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity], elem_id="examples") with gr.Row(): gr.HTML(value=versions_html(), visible=True, elem_id="versions") color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row]) color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)]) delete_button.click(fn=delete_color, inputs=[selected_row, color_display], outputs=[color_display]) exclude_color_button.click(fn=add_color, inputs=[color_picker, gr.State(excluded_color_list)], outputs=[color_display, gr.State(excluded_color_list)]) hex_button.click(hex_create, inputs=[hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list], outputs=[output_image, overlay_image], scroll_to_output=True) generate_input_image.click( fn=generate_input_image_click, inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox, gr.State(False), gr.State(0.5), image_size_ratio], outputs=[input_image], scroll_to_output=True ) generate_depth_button.click( fn=generate_depth_button_click, inputs=[depth_image_source, voxel_size_factor, input_image, output_image, overlay_image, bordered_image_output], outputs=[depth_map_output, model_output], scroll_to_output=True ) model_textbox.change( fn=update_prompt_notes, inputs=model_textbox, outputs=prompt_notes_label,preprocess=False ) model_options.change( fn=lambda x: (gr.update(visible=(x == "Manual Entry")), gr.update(value=x) if x != "Manual Entry" else gr.update()), inputs=model_options, outputs=[model_textbox, model_textbox] ) model_options.change( fn=update_prompt_notes, inputs=model_options, outputs=prompt_notes_label ) composite_button.click( fn=change_color, inputs=[input_image, composite_color, composite_opacity], outputs=[input_image] ) #use conditioned_image as the input_image for generate_input_image_click generate_input_image_from_gallery.click( fn=generate_input_image_click, inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox, gr.State(True), image_guidance_stength, image_size_ratio], outputs=[input_image], scroll_to_output=True ) # Update the state variable with the prerendered image filepath when an image is selected prerendered_image_gallery.select( fn=on_prerendered_gallery_selection, inputs=None, outputs=[gr.State(current_prerendered_image)], # Update the state with the selected image show_api=False ) # replace input image with selected gallery image replace_input_image_button.click( lambda: current_prerendered_image.value, inputs=None, outputs=[input_image], scroll_to_output=True ) output_overlay_composite.change( fn=combine_images_with_lerp, inputs=[input_image, output_image, output_overlay_composite], outputs=[overlay_image], scroll_to_output=True ) output_blend_multiply_composite.change( fn=multiply_and_blend_images, inputs=[input_image, output_image, output_blend_multiply_composite], outputs=[overlay_image], scroll_to_output=True ) output_alpha_composite.change( fn=alpha_composite_with_control, inputs=[input_image, output_image, output_alpha_composite], outputs=[overlay_image], scroll_to_output=True ) add_border_button.click( fn=lambda image_source, mask_w, mask_h, color, opacity, input_img, overlay_img: add_border(input_img if image_source == "Input Image" else overlay_img, mask_w, mask_h, update_color_opacity(detect_color_format(color), opacity * 2.55)), inputs=[border_image_source, mask_width, mask_height, margin_color, margin_opacity, input_image, overlay_image], outputs=[bordered_image_output], scroll_to_output=True ) (()) if __name__ == "__main__": beeuty.queue(default_concurrency_limit=1,max_size=12,api_open=False) beeuty.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb")