Spaces:
Running
on
Zero
Running
on
Zero
Working Version with negative prompts and dynamic trigger words
Browse files- utils/ai_generator.py +169 -0
- utils/ai_generator_diffusers_flux.py +269 -0
- utils/constants.py +2 -0
- utils/lora_details.py +59 -0
utils/ai_generator.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/ai_generator.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import time # Added for implementing delays
|
5 |
+
import torch
|
6 |
+
import random
|
7 |
+
from utils.ai_generator_diffusers_flux import generate_ai_image_local
|
8 |
+
from pathlib import Path
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
+
import requests
|
11 |
+
import io
|
12 |
+
from PIL import Image
|
13 |
+
from tempfile import NamedTemporaryFile
|
14 |
+
import utils.constants as constants
|
15 |
+
|
16 |
+
def generate_image_from_text(text, model_name="flax-community/dalle-mini", image_width=768, image_height=512):
|
17 |
+
# Initialize the InferenceClient
|
18 |
+
client = InferenceClient()
|
19 |
+
# Generate the image from the text
|
20 |
+
response = client(text, model_name)
|
21 |
+
# Get the image data
|
22 |
+
image_data = response.content
|
23 |
+
# Load the image from the data
|
24 |
+
image = Image.open(io.BytesIO(image_data))
|
25 |
+
# Resize the image
|
26 |
+
image = image.resize((image_width, image_height))
|
27 |
+
return image
|
28 |
+
|
29 |
+
def generate_ai_image(
|
30 |
+
map_option,
|
31 |
+
prompt_textbox_value,
|
32 |
+
neg_prompt_textbox_value,
|
33 |
+
model,
|
34 |
+
lora_weights=None,
|
35 |
+
*args,
|
36 |
+
**kwargs
|
37 |
+
):
|
38 |
+
seed = random.randint(1, 99999)
|
39 |
+
if torch.cuda.is_available():
|
40 |
+
print("Local GPU available. Generating image locally.")
|
41 |
+
return generate_ai_image_local(
|
42 |
+
map_option,
|
43 |
+
prompt_textbox_value,
|
44 |
+
neg_prompt_textbox_value,
|
45 |
+
model,
|
46 |
+
lora_weights=lora_weights,
|
47 |
+
seed=seed
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
print("No local GPU available. Sending request to Hugging Face API.")
|
51 |
+
return generate_ai_image_remote(
|
52 |
+
map_option,
|
53 |
+
prompt_textbox_value,
|
54 |
+
neg_prompt_textbox_value,
|
55 |
+
model
|
56 |
+
)
|
57 |
+
|
58 |
+
def generate_ai_image_remote(map_option, prompt_textbox_value, neg_prompt_textbox_value, model, height=512, width=896, num_inference_steps=50, guidance_scale=3.5, seed=777):
|
59 |
+
max_retries = 3
|
60 |
+
retry_delay = 4 # Initial delay in seconds
|
61 |
+
|
62 |
+
try:
|
63 |
+
if map_option != "Prompt":
|
64 |
+
prompt = constants.PROMPTS[map_option]
|
65 |
+
# Convert the negative prompt string to a list
|
66 |
+
negative_prompt_str = constants.NEGATIVE_PROMPTS.get(map_option, "")
|
67 |
+
negative_prompt = [p.strip() for p in negative_prompt_str.split(',') if p.strip()]
|
68 |
+
else:
|
69 |
+
prompt = prompt_textbox_value
|
70 |
+
# Convert the negative prompt string to a list
|
71 |
+
negative_prompt = [p.strip() for p in neg_prompt_textbox_value.split(',') if p.strip()] if neg_prompt_textbox_value else []
|
72 |
+
|
73 |
+
print("Remotely Generating image with the following parameters:")
|
74 |
+
print(f"Prompt: {prompt}")
|
75 |
+
print(f"Negative Prompt: {negative_prompt}")
|
76 |
+
print(f"Height: {height}")
|
77 |
+
print(f"Width: {width}")
|
78 |
+
print(f"Number of Inference Steps: {num_inference_steps}")
|
79 |
+
print(f"Guidance Scale: {guidance_scale}")
|
80 |
+
print(f"Seed: {seed}")
|
81 |
+
|
82 |
+
for attempt in range(1, max_retries + 1):
|
83 |
+
try:
|
84 |
+
if os.getenv("IS_SHARED_SPACE") == "True":
|
85 |
+
client = InferenceClient(
|
86 |
+
model,
|
87 |
+
token=constants.HF_API_TOKEN
|
88 |
+
)
|
89 |
+
image = client.text_to_image(
|
90 |
+
inputs=prompt,
|
91 |
+
parameters={
|
92 |
+
"guidance_scale": guidance_scale,
|
93 |
+
"num_inference_steps": num_inference_steps,
|
94 |
+
"width": width,
|
95 |
+
"height": height,
|
96 |
+
"max_sequence_length":512,
|
97 |
+
# Optional: Add 'scheduler' and 'seed' if needed
|
98 |
+
"seed": seed
|
99 |
+
}
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
103 |
+
headers = {
|
104 |
+
"Authorization": f"Bearer {constants.HF_API_TOKEN}",
|
105 |
+
"Content-Type": "application/json"
|
106 |
+
}
|
107 |
+
payload = {
|
108 |
+
"inputs": prompt,
|
109 |
+
"parameters": {
|
110 |
+
"guidance_scale": guidance_scale,
|
111 |
+
"num_inference_steps": num_inference_steps,
|
112 |
+
"width": width,
|
113 |
+
"height": height,
|
114 |
+
"max_sequence_length":512,
|
115 |
+
# Optional: Add 'scheduler' and 'seed' if needed
|
116 |
+
"seed": seed
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
print(f"Attempt {attempt}: Sending POST request to Hugging Face API...")
|
121 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=300) # Increased timeout to 30 seconds
|
122 |
+
if response.status_code == 200:
|
123 |
+
image_bytes = response.content
|
124 |
+
image = Image.open(io.BytesIO(image_bytes))
|
125 |
+
break # Exit the retry loop on success
|
126 |
+
elif response.status_code == 400:
|
127 |
+
# Handle 400 Bad Request specifically
|
128 |
+
print(f"Bad Request (400): {response.text}")
|
129 |
+
print("Check your request parameters and payload format.")
|
130 |
+
return None # Do not retry on 400 errors
|
131 |
+
elif response.status_code in [429, 504]:
|
132 |
+
print(f"Received status code {response.status_code}. Retrying in {retry_delay} seconds...")
|
133 |
+
if attempt < max_retries:
|
134 |
+
time.sleep(retry_delay)
|
135 |
+
retry_delay *= 2 # Exponential backoff
|
136 |
+
else:
|
137 |
+
response.raise_for_status() # Raise exception after max retries
|
138 |
+
else:
|
139 |
+
print(f"Received unexpected status code {response.status_code}: {response.text}")
|
140 |
+
response.raise_for_status()
|
141 |
+
except (requests.exceptions.ReadTimeout, requests.exceptions.ConnectTimeout) as timeout_error:
|
142 |
+
print(f"Timeout occurred: {timeout_error}. Retrying in {retry_delay} seconds...")
|
143 |
+
if attempt < max_retries:
|
144 |
+
time.sleep(retry_delay)
|
145 |
+
retry_delay *= 2 # Exponential backoff
|
146 |
+
else:
|
147 |
+
raise # Re-raise the exception after max retries
|
148 |
+
except requests.exceptions.RequestException as req_error:
|
149 |
+
print(f"Request exception: {req_error}. Retrying in {retry_delay} seconds...")
|
150 |
+
if attempt < max_retries:
|
151 |
+
time.sleep(retry_delay)
|
152 |
+
retry_delay *= 2 # Exponential backoff
|
153 |
+
else:
|
154 |
+
raise # Re-raise the exception after max retries
|
155 |
+
|
156 |
+
else:
|
157 |
+
# If all retries failed
|
158 |
+
print("Max retries exceeded. Failed to generate image.")
|
159 |
+
return None
|
160 |
+
|
161 |
+
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
|
162 |
+
image.save(tmp.name, format="PNG")
|
163 |
+
constants.temp_files.append(tmp.name)
|
164 |
+
print(f"Image saved to {tmp.name}")
|
165 |
+
return tmp.name
|
166 |
+
|
167 |
+
except Exception as e:
|
168 |
+
print(f"Error generating AI image: {e}")
|
169 |
+
return None
|
utils/ai_generator_diffusers_flux.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/ai_generator_diffusers_flux.py
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import accelerate
|
5 |
+
import transformers
|
6 |
+
import safetensors
|
7 |
+
import xformers
|
8 |
+
from diffusers import FluxPipeline
|
9 |
+
from diffusers.utils import load_image
|
10 |
+
# from huggingface_hub import hf_hub_download
|
11 |
+
from PIL import Image
|
12 |
+
from tempfile import NamedTemporaryFile
|
13 |
+
from src.condition import Condition
|
14 |
+
import utils.constants as constants
|
15 |
+
from utils.image_utils import (
|
16 |
+
crop_and_resize_image,
|
17 |
+
)
|
18 |
+
from utils.version_info import (
|
19 |
+
versions_html,
|
20 |
+
get_torch_info,
|
21 |
+
get_diffusers_version,
|
22 |
+
get_transformers_version,
|
23 |
+
get_xformers_version
|
24 |
+
)
|
25 |
+
from utils.lora_details import get_trigger_words
|
26 |
+
from utils.color_utils import detect_color_format
|
27 |
+
# import utils.misc as misc
|
28 |
+
from pathlib import Path
|
29 |
+
import warnings
|
30 |
+
warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*")
|
31 |
+
#print(torch.__version__) # Ensure it's 2.0 or newer
|
32 |
+
#print(torch.cuda.is_available()) # Ensure CUDA is available
|
33 |
+
|
34 |
+
def generate_image_from_text(
|
35 |
+
text,
|
36 |
+
model_name="black-forest-labs/FLUX.1-dev",
|
37 |
+
lora_weights=None,
|
38 |
+
conditioned_image=None,
|
39 |
+
image_width=1344,
|
40 |
+
image_height=848,
|
41 |
+
guidance_scale=3.5,
|
42 |
+
num_inference_steps=50,
|
43 |
+
seed=0,
|
44 |
+
additional_parameters=None
|
45 |
+
):
|
46 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
47 |
+
print(f"device:{device}\nmodel_name:{model_name}\n")
|
48 |
+
pipe = FluxPipeline.from_pretrained(
|
49 |
+
model_name,
|
50 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
51 |
+
).to(device)
|
52 |
+
pipe = pipe.to(device)
|
53 |
+
pipe.enable_model_cpu_offload()
|
54 |
+
# Load and apply LoRA weights
|
55 |
+
if lora_weights:
|
56 |
+
for lora_weight in lora_weights:
|
57 |
+
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
58 |
+
if lora_configs:
|
59 |
+
for config in lora_configs:
|
60 |
+
weight_name = config.get("weight_name")
|
61 |
+
adapter_name = config.get("adapter_name")
|
62 |
+
pipe.load_lora_weights(
|
63 |
+
lora_weight,
|
64 |
+
weight_name=weight_name,
|
65 |
+
adapter_name=adapter_name,
|
66 |
+
use_auth_token=constants.HF_API_TOKEN
|
67 |
+
)
|
68 |
+
else:
|
69 |
+
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
70 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
71 |
+
conditions = []
|
72 |
+
if conditioned_image is not None:
|
73 |
+
conditioned_image = crop_and_resize_image(conditioned_image, 1024, 1024)
|
74 |
+
condition = Condition("subject", conditioned_image)
|
75 |
+
conditions.append(condition)
|
76 |
+
generate_params = {
|
77 |
+
"prompt": text,
|
78 |
+
"height": image_height,
|
79 |
+
"width": image_width,
|
80 |
+
"guidance_scale": guidance_scale,
|
81 |
+
"num_inference_steps": num_inference_steps,
|
82 |
+
"generator": generator,
|
83 |
+
"conditions": conditions if conditions else None
|
84 |
+
}
|
85 |
+
if additional_parameters:
|
86 |
+
generate_params.update(additional_parameters)
|
87 |
+
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
88 |
+
result = pipe(**generate_params)
|
89 |
+
image = result.images[0]
|
90 |
+
return image
|
91 |
+
|
92 |
+
def generate_image_lowmem(
|
93 |
+
text,
|
94 |
+
neg_prompt=None,
|
95 |
+
model_name="black-forest-labs/FLUX.1-dev",
|
96 |
+
lora_weights=None,
|
97 |
+
conditioned_image=None,
|
98 |
+
image_width=1344,
|
99 |
+
image_height=848,
|
100 |
+
guidance_scale=3.5,
|
101 |
+
num_inference_steps=50,
|
102 |
+
seed=0,
|
103 |
+
true_cfg_scale=1.0,
|
104 |
+
additional_parameters=None
|
105 |
+
):
|
106 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
107 |
+
print(f"device:{device}\nmodel_name:{model_name}\n")
|
108 |
+
print(f"\n {get_torch_info()}\n")
|
109 |
+
# Disable gradient calculations
|
110 |
+
with torch.no_grad():
|
111 |
+
# Initialize the pipeline inside the context manager
|
112 |
+
pipe = FluxPipeline.from_pretrained(
|
113 |
+
model_name,
|
114 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.bfloat32
|
115 |
+
).to(device)
|
116 |
+
# Optionally, don't use CPU offload if not necessary
|
117 |
+
pipe.enable_model_cpu_offload()
|
118 |
+
# alternative version that may be more efficient
|
119 |
+
# pipe.enable_sequential_cpu_offload()
|
120 |
+
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
121 |
+
if flash_attention_enabled == False:
|
122 |
+
#Enable xFormers memory-efficient attention (optional)
|
123 |
+
pipe.enable_xformers_memory_efficient_attention()
|
124 |
+
print("\nEnabled xFormers memory-efficient attention.\n")
|
125 |
+
else:
|
126 |
+
pipe.attn_implementation="flash_attention_2"
|
127 |
+
print("\nEnabled flash_attention_2.\n")
|
128 |
+
pipe.enable_vae_tiling()
|
129 |
+
# Load LoRA weights
|
130 |
+
if lora_weights:
|
131 |
+
for lora_weight in lora_weights:
|
132 |
+
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
133 |
+
if lora_configs:
|
134 |
+
for config in lora_configs:
|
135 |
+
# Load LoRA weights with optional weight_name and adapter_name
|
136 |
+
weight_name = config.get("weight_name")
|
137 |
+
adapter_name = config.get("adapter_name")
|
138 |
+
if weight_name and adapter_name:
|
139 |
+
pipe.load_lora_weights(
|
140 |
+
lora_weight,
|
141 |
+
weight_name=weight_name,
|
142 |
+
adapter_name=adapter_name,
|
143 |
+
use_auth_token=constants.HF_API_TOKEN
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
pipe.load_lora_weights(
|
147 |
+
lora_weight,
|
148 |
+
use_auth_token=constants.HF_API_TOKEN
|
149 |
+
)
|
150 |
+
|
151 |
+
# Apply 'pipe' configurations if present
|
152 |
+
if 'pipe' in config:
|
153 |
+
pipe_config = config['pipe']
|
154 |
+
for method_name, params in pipe_config.items():
|
155 |
+
method = getattr(pipe, method_name, None)
|
156 |
+
if method:
|
157 |
+
print(f"Applying pipe method: {method_name} with params: {params}")
|
158 |
+
method(**params)
|
159 |
+
else:
|
160 |
+
print(f"Method {method_name} not found in pipe.")
|
161 |
+
else:
|
162 |
+
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
163 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
164 |
+
conditions = []
|
165 |
+
if conditioned_image is not None:
|
166 |
+
conditioned_image = crop_and_resize_image(conditioned_image, 1024, 1024)
|
167 |
+
condition = Condition("subject", conditioned_image)
|
168 |
+
conditions.append(condition)
|
169 |
+
if neg_prompt!=None:
|
170 |
+
true_cfg_scale=1.1
|
171 |
+
generate_params = {
|
172 |
+
"prompt": text,
|
173 |
+
"negative_prompt": neg_prompt,
|
174 |
+
"true_cfg_scale": true_cfg_scale,
|
175 |
+
"height": image_height,
|
176 |
+
"width": image_width,
|
177 |
+
"guidance_scale": guidance_scale,
|
178 |
+
"num_inference_steps": num_inference_steps,
|
179 |
+
"generator": generator,
|
180 |
+
"conditions": conditions if conditions else None
|
181 |
+
}
|
182 |
+
if additional_parameters:
|
183 |
+
generate_params.update(additional_parameters)
|
184 |
+
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
185 |
+
# Generate the image
|
186 |
+
result = pipe(**generate_params)
|
187 |
+
image = result.images[0]
|
188 |
+
# Clean up
|
189 |
+
del result
|
190 |
+
del conditions
|
191 |
+
del generator
|
192 |
+
# Delete the pipeline and clear cache
|
193 |
+
del pipe
|
194 |
+
torch.cuda.empty_cache()
|
195 |
+
print(torch.cuda.memory_summary(device=None, abbreviated=False))
|
196 |
+
return image
|
197 |
+
|
198 |
+
def generate_ai_image_local (
|
199 |
+
map_option,
|
200 |
+
prompt_textbox_value,
|
201 |
+
neg_prompt_textbox_value,
|
202 |
+
model="black-forest-labs/FLUX.1-dev",
|
203 |
+
lora_weights=None,
|
204 |
+
conditioned_image=None,
|
205 |
+
height=512,
|
206 |
+
width=896,
|
207 |
+
num_inference_steps=50,
|
208 |
+
guidance_scale=3.5,
|
209 |
+
seed=777
|
210 |
+
):
|
211 |
+
try:
|
212 |
+
if map_option != "Prompt":
|
213 |
+
prompt = constants.PROMPTS[map_option]
|
214 |
+
negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "")
|
215 |
+
else:
|
216 |
+
prompt = prompt_textbox_value
|
217 |
+
negative_prompt = neg_prompt_textbox_value or ""
|
218 |
+
#full_prompt = f"{prompt} {negative_prompt}"
|
219 |
+
additional_parameters = {}
|
220 |
+
if lora_weights:
|
221 |
+
for lora_weight in lora_weights:
|
222 |
+
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
223 |
+
for config in lora_configs:
|
224 |
+
if 'parameters' in config:
|
225 |
+
additional_parameters.update(config['parameters'])
|
226 |
+
elif 'trigger_words' in config:
|
227 |
+
trigger_words = get_trigger_words(lora_weight)
|
228 |
+
prompt = f"{trigger_words} {prompt}"
|
229 |
+
for key, value in additional_parameters.items():
|
230 |
+
if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']:
|
231 |
+
additional_parameters[key] = int(value)
|
232 |
+
elif key in ['guidance_scale','true_cfg_scale']:
|
233 |
+
additional_parameters[key] = float(value)
|
234 |
+
height = additional_parameters.get('height', height)
|
235 |
+
width = additional_parameters.get('width', width)
|
236 |
+
num_inference_steps = additional_parameters.get('num_inference_steps', num_inference_steps)
|
237 |
+
guidance_scale = additional_parameters.get('guidance_scale', guidance_scale)
|
238 |
+
print("Generating image with the following parameters:")
|
239 |
+
print(f"Model: {model}")
|
240 |
+
print(f"LoRA Weights: {lora_weights}")
|
241 |
+
print(f"Prompt: {prompt}")
|
242 |
+
print(f"Neg Prompt: {negative_prompt}")
|
243 |
+
print(f"Height: {height}")
|
244 |
+
print(f"Width: {width}")
|
245 |
+
print(f"Number of Inference Steps: {num_inference_steps}")
|
246 |
+
print(f"Guidance Scale: {guidance_scale}")
|
247 |
+
print(f"Seed: {seed}")
|
248 |
+
print(f"Additional Parameters: {additional_parameters}")
|
249 |
+
image = generate_image_lowmem(
|
250 |
+
text=prompt,
|
251 |
+
model_name=model,
|
252 |
+
neg_prompt=negative_prompt,
|
253 |
+
lora_weights=lora_weights,
|
254 |
+
conditioned_image=conditioned_image,
|
255 |
+
image_width=width,
|
256 |
+
image_height=height,
|
257 |
+
guidance_scale=guidance_scale,
|
258 |
+
num_inference_steps=num_inference_steps,
|
259 |
+
seed=seed,
|
260 |
+
additional_parameters=additional_parameters
|
261 |
+
)
|
262 |
+
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
|
263 |
+
image.save(tmp.name, format="PNG")
|
264 |
+
constants.temp_files.append(tmp.name)
|
265 |
+
print(f"Image saved to {tmp.name}")
|
266 |
+
return tmp.name
|
267 |
+
except Exception as e:
|
268 |
+
print(f"Error generating AI image: {e}")
|
269 |
+
return None
|
utils/constants.py
CHANGED
@@ -15,6 +15,8 @@ os.environ['XFORMERS_FORCE_DISABLE_TRITON']= '1'
|
|
15 |
os.environ["HF_TOKEN"] = ""
|
16 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
17 |
default_lut_example_img = "./LUT/daisy.jpg"
|
|
|
|
|
18 |
|
19 |
PROMPTS = {
|
20 |
"Map1": "eight_color (tabletop_map built from small hexagon pieces) as ((empty black on all sides), barren alien_world_map), with light_blue_is_rivers and brown_is_mountains and red_is_volcano and [white_is_snow at the top and bottom of map] as (four_color background: light_blue, green, tan, brown), horizontal_gradient is (brown to tan to green to light_blue to blue) and vertical_gradient is (white to blue to (green, tan and red) to blue to white), (middle is dark, no_reflections, no_shadows), ((partial hexes on edges and sides are black))",
|
|
|
15 |
os.environ["HF_TOKEN"] = ""
|
16 |
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
17 |
default_lut_example_img = "./LUT/daisy.jpg"
|
18 |
+
os.environ["HF_TOKEN"] = """
|
19 |
+
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
20 |
|
21 |
PROMPTS = {
|
22 |
"Map1": "eight_color (tabletop_map built from small hexagon pieces) as ((empty black on all sides), barren alien_world_map), with light_blue_is_rivers and brown_is_mountains and red_is_volcano and [white_is_snow at the top and bottom of map] as (four_color background: light_blue, green, tan, brown), horizontal_gradient is (brown to tan to green to light_blue to blue) and vertical_gradient is (white to blue to (green, tan and red) to blue to white), (middle is dark, no_reflections, no_shadows), ((partial hexes on edges and sides are black))",
|
utils/lora_details.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/lora_details.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from utils.constants import LORA_DETAILS
|
5 |
+
|
6 |
+
def upd_prompt_notes(model_textbox_value):
|
7 |
+
"""
|
8 |
+
Updates the prompt_notes_label with the notes from LORA_DETAILS.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
model_textbox_value (str): The name of the LoRA model.
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
gr.update: Updated Gradio label component with the notes.
|
15 |
+
"""
|
16 |
+
notes = ""
|
17 |
+
if model_textbox_value in LORA_DETAILS:
|
18 |
+
lora_detail_list = LORA_DETAILS[model_textbox_value]
|
19 |
+
for item in lora_detail_list:
|
20 |
+
if 'notes' in item:
|
21 |
+
notes = item['notes']
|
22 |
+
break
|
23 |
+
else:
|
24 |
+
notes = "Enter Prompt description of your image"
|
25 |
+
return gr.update(value=notes)
|
26 |
+
|
27 |
+
def get_trigger_words(model_textbox_value):
|
28 |
+
"""
|
29 |
+
Retrieves the trigger words from constants.LORA_DETAILS for the specified model.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
model_textbox_value (str): The name of the LoRA model.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
str: The trigger words associated with the model, or a default message if not found.
|
36 |
+
"""
|
37 |
+
trigger_words = ""
|
38 |
+
if model_textbox_value in LORA_DETAILS:
|
39 |
+
lora_detail_list = LORA_DETAILS[model_textbox_value]
|
40 |
+
for item in lora_detail_list:
|
41 |
+
if 'trigger_words' in item:
|
42 |
+
trigger_words = item['trigger_words']
|
43 |
+
break
|
44 |
+
else:
|
45 |
+
trigger_words = ""
|
46 |
+
return trigger_words
|
47 |
+
|
48 |
+
def upd_trigger_words(model_textbox_value):
|
49 |
+
"""
|
50 |
+
Updates the trigger_words_label with the trigger words from LORA_DETAILS.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
model_textbox_value (str): The name of the LoRA model.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
gr.update: Updated Gradio label component with the trigger words.
|
57 |
+
"""
|
58 |
+
trigger_words = get_trigger_words(model_textbox_value)
|
59 |
+
return gr.update(value=trigger_words)
|