Spaces:
Running
on
Zero
Running
on
Zero
| from typing import * | |
| import torch | |
| import torch.nn as nn | |
| from . import BACKEND, DEBUG | |
| SparseTensorData = None # Lazy import | |
| __all__ = [ | |
| 'SparseTensor', | |
| 'sparse_batch_broadcast', | |
| 'sparse_batch_op', | |
| 'sparse_cat', | |
| 'sparse_unbind', | |
| ] | |
| class SparseTensor: | |
| """ | |
| Sparse tensor with support for both torchsparse and spconv backends. | |
| Parameters: | |
| - feats (torch.Tensor): Features of the sparse tensor. | |
| - coords (torch.Tensor): Coordinates of the sparse tensor. | |
| - shape (torch.Size): Shape of the sparse tensor. | |
| - layout (List[slice]): Layout of the sparse tensor for each batch | |
| - data (SparseTensorData): Sparse tensor data used for convolusion | |
| NOTE: | |
| - Data corresponding to a same batch should be contiguous. | |
| - Coords should be in [0, 1023] | |
| """ | |
| def __init__(self, feats: torch.Tensor, coords: torch.Tensor, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ... | |
| def __init__(self, data, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ... | |
| def __init__(self, *args, **kwargs): | |
| # Lazy import of sparse tensor backend | |
| global SparseTensorData | |
| if SparseTensorData is None: | |
| import importlib | |
| if BACKEND == 'torchsparse': | |
| SparseTensorData = importlib.import_module('torchsparse').SparseTensor | |
| elif BACKEND == 'spconv': | |
| SparseTensorData = importlib.import_module('spconv.pytorch').SparseConvTensor | |
| method_id = 0 | |
| if len(args) != 0: | |
| method_id = 0 if isinstance(args[0], torch.Tensor) else 1 | |
| else: | |
| method_id = 1 if 'data' in kwargs else 0 | |
| if method_id == 0: | |
| feats, coords, shape, layout = args + (None,) * (4 - len(args)) | |
| if 'feats' in kwargs: | |
| feats = kwargs['feats'] | |
| del kwargs['feats'] | |
| if 'coords' in kwargs: | |
| coords = kwargs['coords'] | |
| del kwargs['coords'] | |
| if 'shape' in kwargs: | |
| shape = kwargs['shape'] | |
| del kwargs['shape'] | |
| if 'layout' in kwargs: | |
| layout = kwargs['layout'] | |
| del kwargs['layout'] | |
| if shape is None: | |
| shape = self.__cal_shape(feats, coords) | |
| if layout is None: | |
| layout = self.__cal_layout(coords, shape[0]) | |
| if BACKEND == 'torchsparse': | |
| self.data = SparseTensorData(feats, coords, **kwargs) | |
| elif BACKEND == 'spconv': | |
| spatial_shape = list(coords.max(0)[0] + 1)[1:] | |
| self.data = SparseTensorData(feats.reshape(feats.shape[0], -1), coords, spatial_shape, shape[0], **kwargs) | |
| self.data._features = feats | |
| elif method_id == 1: | |
| data, shape, layout = args + (None,) * (3 - len(args)) | |
| if 'data' in kwargs: | |
| data = kwargs['data'] | |
| del kwargs['data'] | |
| if 'shape' in kwargs: | |
| shape = kwargs['shape'] | |
| del kwargs['shape'] | |
| if 'layout' in kwargs: | |
| layout = kwargs['layout'] | |
| del kwargs['layout'] | |
| self.data = data | |
| if shape is None: | |
| shape = self.__cal_shape(self.feats, self.coords) | |
| if layout is None: | |
| layout = self.__cal_layout(self.coords, shape[0]) | |
| self._shape = shape | |
| self._layout = layout | |
| self._scale = kwargs.get('scale', (1, 1, 1)) | |
| self._spatial_cache = kwargs.get('spatial_cache', {}) | |
| if DEBUG: | |
| try: | |
| assert self.feats.shape[0] == self.coords.shape[0], f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}" | |
| assert self.shape == self.__cal_shape(self.feats, self.coords), f"Invalid shape: {self.shape}" | |
| assert self.layout == self.__cal_layout(self.coords, self.shape[0]), f"Invalid layout: {self.layout}" | |
| for i in range(self.shape[0]): | |
| assert torch.all(self.coords[self.layout[i], 0] == i), f"The data of batch {i} is not contiguous" | |
| except Exception as e: | |
| print('Debugging information:') | |
| print(f"- Shape: {self.shape}") | |
| print(f"- Layout: {self.layout}") | |
| print(f"- Scale: {self._scale}") | |
| print(f"- Coords: {self.coords}") | |
| raise e | |
| def __cal_shape(self, feats, coords): | |
| shape = [] | |
| shape.append(coords[:, 0].max().item() + 1) | |
| shape.extend([*feats.shape[1:]]) | |
| return torch.Size(shape) | |
| def __cal_layout(self, coords, batch_size): | |
| seq_len = torch.bincount(coords[:, 0], minlength=batch_size) | |
| offset = torch.cumsum(seq_len, dim=0) | |
| layout = [slice((offset[i] - seq_len[i]).item(), offset[i].item()) for i in range(batch_size)] | |
| return layout | |
| def shape(self) -> torch.Size: | |
| return self._shape | |
| def dim(self) -> int: | |
| return len(self.shape) | |
| def layout(self) -> List[slice]: | |
| return self._layout | |
| def feats(self) -> torch.Tensor: | |
| if BACKEND == 'torchsparse': | |
| return self.data.F | |
| elif BACKEND == 'spconv': | |
| return self.data.features | |
| def feats(self, value: torch.Tensor): | |
| if BACKEND == 'torchsparse': | |
| self.data.F = value | |
| elif BACKEND == 'spconv': | |
| self.data.features = value | |
| def coords(self) -> torch.Tensor: | |
| if BACKEND == 'torchsparse': | |
| return self.data.C | |
| elif BACKEND == 'spconv': | |
| return self.data.indices | |
| def coords(self, value: torch.Tensor): | |
| if BACKEND == 'torchsparse': | |
| self.data.C = value | |
| elif BACKEND == 'spconv': | |
| self.data.indices = value | |
| def dtype(self): | |
| return self.feats.dtype | |
| def device(self): | |
| return self.feats.device | |
| def to(self, dtype: torch.dtype) -> 'SparseTensor': ... | |
| def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None) -> 'SparseTensor': ... | |
| def to(self, *args, **kwargs) -> 'SparseTensor': | |
| device = None | |
| dtype = None | |
| if len(args) == 2: | |
| device, dtype = args | |
| elif len(args) == 1: | |
| if isinstance(args[0], torch.dtype): | |
| dtype = args[0] | |
| else: | |
| device = args[0] | |
| if 'dtype' in kwargs: | |
| assert dtype is None, "to() received multiple values for argument 'dtype'" | |
| dtype = kwargs['dtype'] | |
| if 'device' in kwargs: | |
| assert device is None, "to() received multiple values for argument 'device'" | |
| device = kwargs['device'] | |
| new_feats = self.feats.to(device=device, dtype=dtype) | |
| new_coords = self.coords.to(device=device) | |
| return self.replace(new_feats, new_coords) | |
| def type(self, dtype): | |
| new_feats = self.feats.type(dtype) | |
| return self.replace(new_feats) | |
| def cpu(self) -> 'SparseTensor': | |
| new_feats = self.feats.cpu() | |
| new_coords = self.coords.cpu() | |
| return self.replace(new_feats, new_coords) | |
| def cuda(self) -> 'SparseTensor': | |
| new_feats = self.feats.cuda() | |
| new_coords = self.coords.cuda() | |
| return self.replace(new_feats, new_coords) | |
| def half(self) -> 'SparseTensor': | |
| new_feats = self.feats.half() | |
| return self.replace(new_feats) | |
| def float(self) -> 'SparseTensor': | |
| new_feats = self.feats.float() | |
| return self.replace(new_feats) | |
| def detach(self) -> 'SparseTensor': | |
| new_coords = self.coords.detach() | |
| new_feats = self.feats.detach() | |
| return self.replace(new_feats, new_coords) | |
| def dense(self) -> torch.Tensor: | |
| if BACKEND == 'torchsparse': | |
| return self.data.dense() | |
| elif BACKEND == 'spconv': | |
| return self.data.dense() | |
| def reshape(self, *shape) -> 'SparseTensor': | |
| new_feats = self.feats.reshape(self.feats.shape[0], *shape) | |
| return self.replace(new_feats) | |
| def unbind(self, dim: int) -> List['SparseTensor']: | |
| return sparse_unbind(self, dim) | |
| def replace(self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None) -> 'SparseTensor': | |
| new_shape = [self.shape[0]] | |
| new_shape.extend(feats.shape[1:]) | |
| if BACKEND == 'torchsparse': | |
| new_data = SparseTensorData( | |
| feats=feats, | |
| coords=self.data.coords if coords is None else coords, | |
| stride=self.data.stride, | |
| spatial_range=self.data.spatial_range, | |
| ) | |
| new_data._caches = self.data._caches | |
| elif BACKEND == 'spconv': | |
| new_data = SparseTensorData( | |
| self.data.features.reshape(self.data.features.shape[0], -1), | |
| self.data.indices, | |
| self.data.spatial_shape, | |
| self.data.batch_size, | |
| self.data.grid, | |
| self.data.voxel_num, | |
| self.data.indice_dict | |
| ) | |
| new_data._features = feats | |
| new_data.benchmark = self.data.benchmark | |
| new_data.benchmark_record = self.data.benchmark_record | |
| new_data.thrust_allocator = self.data.thrust_allocator | |
| new_data._timer = self.data._timer | |
| new_data.force_algo = self.data.force_algo | |
| new_data.int8_scale = self.data.int8_scale | |
| if coords is not None: | |
| new_data.indices = coords | |
| new_tensor = SparseTensor(new_data, shape=torch.Size(new_shape), layout=self.layout, scale=self._scale, spatial_cache=self._spatial_cache) | |
| return new_tensor | |
| def full(aabb, dim, value, dtype=torch.float32, device=None) -> 'SparseTensor': | |
| N, C = dim | |
| x = torch.arange(aabb[0], aabb[3] + 1) | |
| y = torch.arange(aabb[1], aabb[4] + 1) | |
| z = torch.arange(aabb[2], aabb[5] + 1) | |
| coords = torch.stack(torch.meshgrid(x, y, z, indexing='ij'), dim=-1).reshape(-1, 3) | |
| coords = torch.cat([ | |
| torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1), | |
| coords.repeat(N, 1), | |
| ], dim=1).to(dtype=torch.int32, device=device) | |
| feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device) | |
| return SparseTensor(feats=feats, coords=coords) | |
| def __merge_sparse_cache(self, other: 'SparseTensor') -> dict: | |
| new_cache = {} | |
| for k in set(list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())): | |
| if k in self._spatial_cache: | |
| new_cache[k] = self._spatial_cache[k] | |
| if k in other._spatial_cache: | |
| if k not in new_cache: | |
| new_cache[k] = other._spatial_cache[k] | |
| else: | |
| new_cache[k].update(other._spatial_cache[k]) | |
| return new_cache | |
| def __neg__(self) -> 'SparseTensor': | |
| return self.replace(-self.feats) | |
| def __elemwise__(self, other: Union[torch.Tensor, 'SparseTensor'], op: callable) -> 'SparseTensor': | |
| if isinstance(other, torch.Tensor): | |
| try: | |
| other = torch.broadcast_to(other, self.shape) | |
| other = sparse_batch_broadcast(self, other) | |
| except: | |
| pass | |
| if isinstance(other, SparseTensor): | |
| other = other.feats | |
| new_feats = op(self.feats, other) | |
| new_tensor = self.replace(new_feats) | |
| if isinstance(other, SparseTensor): | |
| new_tensor._spatial_cache = self.__merge_sparse_cache(other) | |
| return new_tensor | |
| def __add__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor': | |
| return self.__elemwise__(other, torch.add) | |
| def __radd__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor': | |
| return self.__elemwise__(other, torch.add) | |
| def __sub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor': | |
| return self.__elemwise__(other, torch.sub) | |
| def __rsub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor': | |
| return self.__elemwise__(other, lambda x, y: torch.sub(y, x)) | |
| def __mul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor': | |
| return self.__elemwise__(other, torch.mul) | |
| def __rmul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor': | |
| return self.__elemwise__(other, torch.mul) | |
| def __truediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor': | |
| return self.__elemwise__(other, torch.div) | |
| def __rtruediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor': | |
| return self.__elemwise__(other, lambda x, y: torch.div(y, x)) | |
| def __getitem__(self, idx): | |
| if isinstance(idx, int): | |
| idx = [idx] | |
| elif isinstance(idx, slice): | |
| idx = range(*idx.indices(self.shape[0])) | |
| elif isinstance(idx, torch.Tensor): | |
| if idx.dtype == torch.bool: | |
| assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}" | |
| idx = idx.nonzero().squeeze(1) | |
| elif idx.dtype in [torch.int32, torch.int64]: | |
| assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}" | |
| else: | |
| raise ValueError(f"Unknown index type: {idx.dtype}") | |
| else: | |
| raise ValueError(f"Unknown index type: {type(idx)}") | |
| coords = [] | |
| feats = [] | |
| for new_idx, old_idx in enumerate(idx): | |
| coords.append(self.coords[self.layout[old_idx]].clone()) | |
| coords[-1][:, 0] = new_idx | |
| feats.append(self.feats[self.layout[old_idx]]) | |
| coords = torch.cat(coords, dim=0).contiguous() | |
| feats = torch.cat(feats, dim=0).contiguous() | |
| return SparseTensor(feats=feats, coords=coords) | |
| def register_spatial_cache(self, key, value) -> None: | |
| """ | |
| Register a spatial cache. | |
| The spatial cache can be any thing you want to cache. | |
| The registery and retrieval of the cache is based on current scale. | |
| """ | |
| scale_key = str(self._scale) | |
| if scale_key not in self._spatial_cache: | |
| self._spatial_cache[scale_key] = {} | |
| self._spatial_cache[scale_key][key] = value | |
| def get_spatial_cache(self, key=None): | |
| """ | |
| Get a spatial cache. | |
| """ | |
| scale_key = str(self._scale) | |
| cur_scale_cache = self._spatial_cache.get(scale_key, {}) | |
| if key is None: | |
| return cur_scale_cache | |
| return cur_scale_cache.get(key, None) | |
| def sparse_batch_broadcast(input: SparseTensor, other: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation. | |
| Args: | |
| input (torch.Tensor): 1D tensor to broadcast. | |
| target (SparseTensor): Sparse tensor to broadcast to. | |
| op (callable): Operation to perform after broadcasting. Defaults to torch.add. | |
| """ | |
| coords, feats = input.coords, input.feats | |
| broadcasted = torch.zeros_like(feats) | |
| for k in range(input.shape[0]): | |
| broadcasted[input.layout[k]] = other[k] | |
| return broadcasted | |
| def sparse_batch_op(input: SparseTensor, other: torch.Tensor, op: callable = torch.add) -> SparseTensor: | |
| """ | |
| Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation. | |
| Args: | |
| input (torch.Tensor): 1D tensor to broadcast. | |
| target (SparseTensor): Sparse tensor to broadcast to. | |
| op (callable): Operation to perform after broadcasting. Defaults to torch.add. | |
| """ | |
| return input.replace(op(input.feats, sparse_batch_broadcast(input, other))) | |
| def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor: | |
| """ | |
| Concatenate a list of sparse tensors. | |
| Args: | |
| inputs (List[SparseTensor]): List of sparse tensors to concatenate. | |
| """ | |
| if dim == 0: | |
| start = 0 | |
| coords = [] | |
| for input in inputs: | |
| coords.append(input.coords.clone()) | |
| coords[-1][:, 0] += start | |
| start += input.shape[0] | |
| coords = torch.cat(coords, dim=0) | |
| feats = torch.cat([input.feats for input in inputs], dim=0) | |
| output = SparseTensor( | |
| coords=coords, | |
| feats=feats, | |
| ) | |
| else: | |
| feats = torch.cat([input.feats for input in inputs], dim=dim) | |
| output = inputs[0].replace(feats) | |
| return output | |
| def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]: | |
| """ | |
| Unbind a sparse tensor along a dimension. | |
| Args: | |
| input (SparseTensor): Sparse tensor to unbind. | |
| dim (int): Dimension to unbind. | |
| """ | |
| if dim == 0: | |
| return [input[i] for i in range(input.shape[0])] | |
| else: | |
| feats = input.feats.unbind(dim) | |
| return [input.replace(f) for f in feats] | |