Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from PIL import Image, ImageDraw, ImageChops, ImageColor | |
from haishoku.haishoku import Haishoku | |
import os | |
from tempfile import NamedTemporaryFile | |
from pathlib import Path | |
import atexit | |
import random | |
import spaces | |
# Import constants | |
import utils.constants as constants | |
IS_SHARED_SPACE = constants.IS_SHARED_SPACE | |
# Import functions from modules | |
from utils.file_utils import cleanup_temp_files | |
from utils.color_utils import ( | |
rgb_to_hex, | |
hex_to_rgb, | |
detect_color_format, | |
update_color_opacity, | |
) | |
from utils.misc import (get_filename, pause, convert_ratio_to_dimensions) | |
from utils.depth_estimation import estimate_depth, create_3d_model, generate_depth_and_3d, generate_depth_button_click | |
from utils.image_utils import ( | |
change_color, | |
open_image, | |
build_prerendered_images, | |
upscale_image, | |
lerp_imagemath, | |
shrink_and_paste_on_blank, | |
show_lut, | |
apply_lut_to_image_path, | |
multiply_and_blend_images, | |
alpha_composite_with_control | |
) | |
from utils.hex_grid import ( | |
generate_hexagon_grid, | |
generate_hexagon_grid_interface, | |
) | |
from utils.excluded_colors import ( | |
add_color, | |
delete_color, | |
build_dataframe, | |
on_input, | |
excluded_color_list, | |
on_color_display_select | |
) | |
from utils.ai_generator import ( | |
generate_ai_image, | |
) | |
from utils.version_info import ( | |
versions_html, | |
get_torch_info | |
) | |
from utils.lora_details import ( | |
upd_prompt_notes | |
) | |
input_image_palette = [] | |
current_prerendered_image = gr.State("./images/images/Beeuty-1.png") | |
# Register the cleanup function | |
atexit.register(cleanup_temp_files) | |
def hex_create(hex_size, border_size, input_image_path, start_x, start_y, end_x, end_y, rotation, background_color_hex, background_opacity, border_color_hex, border_opacity, fill_hex, excluded_colors_var, filter_color, x_spacing, y_spacing, add_hex_text_option=None, custom_text_list=None, custom_text_color_list=None): | |
global input_image_palette | |
try: | |
# Load and process the input image | |
input_image = Image.open(input_image_path).convert("RGBA") | |
except Exception as e: | |
print(f"Failed to convert image to RGBA: {e}") | |
# Open the original image without conversion | |
input_image = Image.open(input_image_path) | |
# Ensure the canvas is at least 1344x768 pixels | |
min_width, min_height = 1344, 768 | |
canvas_width = max(min_width, input_image.width) | |
canvas_height = max(min_height, input_image.height) | |
# Create a transparent canvas with the required dimensions | |
new_canvas = Image.new("RGBA", (canvas_width, canvas_height), (0, 0, 0, 0)) | |
# Calculate position to center the input image on the canvas | |
paste_x = (canvas_width - input_image.width) // 2 | |
paste_y = (canvas_height - input_image.height) // 2 | |
# Paste the input image onto the canvas | |
new_canvas.paste(input_image, (paste_x, paste_y)) | |
# Save the 'RGBA' image to a temporary file and update 'input_image_path' | |
with NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: | |
new_canvas.save(tmp_file.name, format="PNG") | |
input_image_path = tmp_file.name | |
constants.temp_files.append(tmp_file.name) | |
# Update 'input_image' with the new image as a file path | |
input_image = Image.open(input_image_path) | |
# Use Haishoku to get the palette from the new image | |
input_palette = Haishoku.loadHaishoku(input_image_path) | |
input_image_palette = input_palette.palette | |
# Update colors with opacity | |
background_color = update_color_opacity( | |
hex_to_rgb(background_color_hex), | |
int(background_opacity * (255 / 100)) | |
) | |
border_color = update_color_opacity( | |
hex_to_rgb(border_color_hex), | |
int(border_opacity * (255 / 100)) | |
) | |
# Prepare excluded colors list | |
excluded_color_list = [tuple(lst) for lst in excluded_colors_var] | |
# Generate the hexagon grid images | |
grid_image = generate_hexagon_grid_interface( | |
hex_size, | |
border_size, | |
input_image, | |
start_x, | |
start_y, | |
end_x, | |
end_y, | |
rotation, | |
background_color, | |
border_color, | |
fill_hex, | |
excluded_color_list, | |
filter_color, | |
x_spacing, | |
y_spacing, | |
add_hex_text_option, | |
custom_text_list, | |
custom_text_color_list | |
) | |
return grid_image | |
def get_model_and_lora(model_textbox): | |
""" | |
Determines the model and LoRA weights based on the model_textbox input. | |
wieghts must be in an array ["Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"] | |
""" | |
# If the input is in the list of models, return it with None as LoRA weights | |
if model_textbox in constants.MODELS: | |
return model_textbox, [] | |
# If the input is in the list of LoRA weights, get the corresponding model | |
elif model_textbox in constants.LORA_WEIGHTS: | |
model = constants.LORA_TO_MODEL.get(model_textbox) | |
return model, model_textbox.split() | |
else: | |
# Default to a known model if input is unrecognized | |
default_model = model_textbox | |
return default_model, [] | |
#@spaces.GPU(duration=256) | |
def generate_input_image_click(map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=3): | |
# Get the model and LoRA weights | |
model, lora_weights = get_model_and_lora(model_textbox_value) | |
global current_prerendered_image | |
conditioned_image=None | |
if use_conditioned_image: | |
print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n") | |
# ensure the conditioned image is an image and not a string, cannot use RGBA | |
if isinstance(current_prerendered_image.value, str): | |
conditioned_image = open_image(current_prerendered_image.value).convert("RGB") | |
print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n") | |
# Convert image_format from a string split by ":" into two numbers divided | |
width_ratio, height_ratio = map(int, image_format.split(":")) | |
aspect_ratio = width_ratio / height_ratio | |
width, height = convert_ratio_to_dimensions(aspect_ratio, 512) | |
# Generate the AI image and get the image path | |
image_path = generate_ai_image( | |
map_option, | |
prompt_textbox_value, | |
negative_prompt_textbox_value, | |
model, | |
lora_weights, | |
conditioned_image, | |
stength=strength, | |
height=height, | |
width=width | |
) | |
# Open the generated image | |
try: | |
image = Image.open(image_path).convert("RGBA") | |
except Exception as e: | |
print(f"Failed to open generated image: {e}") | |
return image_path # Return the original image path if opening fails | |
# Upscale the image | |
upscaled_image = upscale_image(image, scale_factor) | |
# Save the upscaled image to a temporary file | |
with NamedTemporaryFile(delete=False, suffix=".png") as tmp_upscaled: | |
upscaled_image.save(tmp_upscaled.name, format="PNG") | |
constants.temp_files.append(tmp_upscaled.name) | |
print(f"Upscaled image saved to {tmp_upscaled.name}") | |
# Return the path of the upscaled image | |
return tmp_upscaled.name | |
def update_prompt_visibility(map_option): | |
is_visible = (map_option == "Prompt") | |
return ( | |
gr.update(visible=is_visible), | |
gr.update(visible=is_visible), | |
gr.update(visible=is_visible) | |
) | |
def update_prompt_notes(model_textbox_value): | |
return upd_prompt_notes(model_textbox_value) | |
def on_prerendered_gallery_selection(event_data: gr.SelectData): | |
global current_prerendered_image | |
selected_index = event_data.index | |
selected_image = constants.pre_rendered_maps_paths[selected_index] | |
print(f"Gallery Image Selected: {selected_image}\n") | |
current_prerendered_image.value = selected_image | |
return current_prerendered_image | |
def combine_images_with_lerp(input_image, output_image, alpha): | |
in_image = open_image(input_image) | |
out_image = open_image(output_image) | |
print(f"Combining images with alpha: {alpha}") | |
return lerp_imagemath(in_image, out_image, alpha) | |
def add_border(image, mask_width, mask_height, blank_color): | |
bordered_image_output = Image.open(image).convert("RGBA") | |
margin_color = detect_color_format(blank_color) | |
print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}") | |
return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color) | |
title = "HexaGrid Creator" | |
description = "Customizable Hexagon Grid Image Generator" | |
examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]] | |
gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/"]) | |
# Gradio Blocks Interface | |
with gr.Blocks(css_paths="style_20250128.css", title="HexaGrid Creator", theme='Surn/beeuty') as beeuty: | |
with gr.Row(): | |
gr.Markdown (""" | |
# HexaGrid Creator | |
## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢ | |
<details> | |
<summary> | |
Welcome to HexaGrid Creator, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you. | |
## Drop an image into the Input Image and get started! | |
</summary> | |
## What is HexaGrid Creator? | |
HexaGrid Creator is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles! | |
### What Can You Do? | |
- **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters. | |
- **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them. | |
- **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look. | |
- **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time. | |
- **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization. | |
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. | |
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. | |
- **Add Margins:** Add customizable margins around your images for a polished finish. | |
### Why You'll Love It | |
- **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun! | |
- **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways. | |
- **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢ | |
- **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization. | |
### Get Started | |
1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool. | |
2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay. | |
3. **Download and Share:** Once you're happy with your creation, download it and share it with the world! | |
### Advanced Features | |
- **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images. | |
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. | |
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. | |
- **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization. | |
- **Add Margins:** Customize margins around your images for a polished finish. | |
Join the hive and start creating with HexaGrid Creator today! | |
</details> | |
""", elem_classes="intro") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
input_image = gr.Image( | |
label="Input Image", | |
type="filepath", | |
interactive=True, | |
elem_classes="centered solid imgcontainer", | |
key="imgInput", | |
image_mode="RGBA", | |
format="PNG" | |
) | |
with gr.Column(): | |
with gr.Accordion("Hex Coloring and Exclusion", open = False): | |
with gr.Row(): | |
with gr.Column(): | |
color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050") | |
with gr.Column(): | |
filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,) | |
exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid") | |
color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered") | |
selected_row = gr.Number(0, label="Selected Row", visible=False) | |
delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid") | |
fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True) | |
with gr.Accordion("Image Filters", open = False): | |
with gr.Row(): | |
with gr.Column(): | |
composite_color = gr.ColorPicker(label="Color", value="#ede9ac44") | |
with gr.Column(): | |
composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True) | |
with gr.Row(): | |
composite_button = gr.Button("Composite", elem_classes="solid") | |
with gr.Row(): | |
with gr.Column(): | |
lut_filename = gr.Textbox( | |
value="", | |
label="Look Up Table (LUT) File Name", | |
elem_id="lutFileName") | |
with gr.Column(): | |
lut_file = gr.File( | |
value=None, | |
file_count="single", | |
file_types=[".cube"], | |
type="filepath", | |
label="LUT cube File") | |
with gr.Row(): | |
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=constants.default_lut_example_img) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(""" | |
### Included Filters (LUTs) | |
There are several included Filters: | |
Try them on the example image before applying to your Input Image. | |
""", elem_id="lut_markdown") | |
with gr.Column(): | |
gr.Examples(elem_id="lut_examples", | |
examples=[[f] for f in constants.lut_files], | |
inputs=[lut_filename], | |
outputs=[lut_filename], | |
label="Select a Filter (LUT) file. Populate the LUT File Name field" | |
) | |
with gr.Row(): | |
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button") | |
lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename]) | |
lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image]) | |
apply_lut_button.click(apply_lut_to_image_path, inputs=[lut_filename, input_image], outputs=[input_image],scroll_to_output=True) | |
with gr.Row(): | |
with gr.Accordion("Generative AI", open = False): | |
with gr.Row(): | |
with gr.Column(): | |
model_options = gr.Dropdown( | |
label="Model Options", | |
choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"], | |
value="Cossale/Frames2-Flex.1", | |
elem_classes="solid" | |
) | |
model_textbox = gr.Textbox( | |
label="LORA/Model", | |
value="Cossale/Frames2-Flex.1", | |
elem_classes="solid", | |
elem_id="inference_model", | |
visible=False | |
) | |
# Update map_options to a Dropdown with choices from constants.PROMPTS keys | |
with gr.Row(): | |
with gr.Column(): | |
map_options = gr.Dropdown( | |
label="Map Options", | |
choices=list(constants.PROMPTS.keys()), | |
value="Alien Landscape", | |
elem_classes="solid" | |
) | |
with gr.Column(): | |
# Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1 | |
# The values of height and width are based on common resolutions for each aspect ratio | |
# Default to 16x9, 912x512 | |
image_size_ratio = gr.Dropdown(label="Image Size", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value",interactive=True) | |
prompt_textbox = gr.Textbox( | |
label="Prompt", | |
visible=False, | |
elem_classes="solid", | |
value="top-down, (tabletop_map built from small hexagon pieces) hexagon map of a Battletech_boardgame forest with lakes, forest, magic fauna, and snow at the top and bottom, (middle is dark, no_reflections, no_shadows) , tall and short hexagon tiles. Viewed from above.", | |
lines=4 | |
) | |
negative_prompt_textbox = gr.Textbox( | |
label="Negative Prompt", | |
visible=False, | |
elem_classes="solid", | |
value="low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text" | |
) | |
prompt_notes_label = gr.Label( | |
"You should use FRM$ as trigger words. @1.5 minutes", | |
elem_classes="solid centered small", | |
show_label=False, | |
visible=False | |
) | |
# Keep the change event to maintain functionality | |
map_options.change( | |
fn=update_prompt_visibility, | |
inputs=[map_options], | |
outputs=[prompt_textbox, negative_prompt_textbox, prompt_notes_label] | |
) | |
with gr.Row(): | |
generate_input_image = gr.Button( | |
"Generate AI Image", | |
elem_id="generate_input_image", | |
elem_classes="solid" | |
) | |
with gr.Column(scale=2): | |
with gr.Accordion("Template Image Styles", open = False): | |
with gr.Row(): | |
# Gallery from PRE_RENDERED_IMAGES GOES HERE | |
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images(constants.pre_rendered_maps_paths), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto",file_types=["image"], format="png",allow_preview=False) | |
with gr.Row(): | |
image_guidance_stength = gr.Slider(label="Image Guidance Strength", minimum=0, maximum=1.0, value=0.5, step=0.05, interactive=True) | |
with gr.Column(): | |
replace_input_image_button = gr.Button( | |
"Replace Input Image", | |
elem_id="prerendered_replace_input_image_button", | |
elem_classes="solid" | |
) | |
with gr.Column(): | |
generate_input_image_from_gallery = gr.Button( | |
"Generate AI Image from Gallery", | |
elem_id="generate_input_image_from_gallery", | |
elem_classes="solid" | |
) | |
with gr.Accordion("Advanced Hexagon Settings", open = False): | |
with gr.Row(): | |
start_x = gr.Number(label="Start X", value=0, minimum=-512, maximum= 512, precision=0) | |
start_y = gr.Number(label="Start Y", value=0, minimum=-512, maximum= 512, precision=0) | |
end_x = gr.Number(label="End X", value=0, minimum=-512, maximum= 512, precision=0) | |
end_y = gr.Number(label="End Y", value=0, minimum=-512, maximum= 512, precision=0) | |
with gr.Row(): | |
x_spacing = gr.Number(label="Adjust Horizontal spacing", value=-1, minimum=-200, maximum=200, precision=1) | |
y_spacing = gr.Number(label="Adjust Vertical spacing", value=1, minimum=-200, maximum=200, precision=1) | |
with gr.Row(): | |
rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)") | |
add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None) | |
with gr.Row(): | |
custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,) | |
custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False) | |
with gr.Row(): | |
hex_text_info = gr.Markdown(""" | |
### Text Color uses the Border Color and Border Opacity, unless you use a custom list. | |
### The Custom Text List and Custom Text Color List are comma separated lists. | |
### The custom color list is a comma separated list of hex colors. | |
#### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue" | |
""", elem_id="hex_text_info", visible=False) | |
add_hex_text.change( | |
fn=lambda x: ( | |
gr.update(visible=(x == "Custom List")), | |
gr.update(visible=(x == "Custom List")), | |
gr.update(visible=(x != None)) | |
), | |
inputs=add_hex_text, | |
outputs=[custom_text_list, custom_text_color_list, hex_text_info] | |
) | |
with gr.Row(): | |
hex_size = gr.Number(label="Hexagon Size", value=32, minimum=1, maximum=768) | |
border_size = gr.Slider(-5,25,value=0,step=1,label="Border Size") | |
with gr.Row(): | |
rotation = gr.Slider(-90, 180, 0.0, 0.1, label="deg. Rotation") | |
background_color = gr.ColorPicker(label="Background Color", value="#000000", interactive=True) | |
background_opacity = gr.Slider(0,100,0,1,label="Background Opacity %") | |
border_color = gr.ColorPicker(label="Border Color", value="#7b7b7b", interactive=True) | |
border_opacity = gr.Slider(0,100,0,1,label="Border Opacity %") | |
with gr.Row(): | |
hex_button = gr.Button("Generate Hex Grid!", elem_classes="solid", elem_id="btn-generate") | |
with gr.Row(): | |
output_image = gr.Image(label="Hexagon Grid Image", image_mode = "RGBA", show_download_button=True, show_share_button=True,elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOutput") | |
overlay_image = gr.Image(label="Hexagon Overlay Image", image_mode = "RGBA", show_share_button=True, elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOverlay") | |
with gr.Row(): | |
output_overlay_composite = gr.Slider(0,100,50,0.5, label="Interpolate Intensity") | |
output_blend_multiply_composite = gr.Slider(0,100,50,0.5, label="Overlay Intensity") | |
output_alpha_composite = gr.Slider(0,100,50,0.5, label="Alpha Composite Intensity") | |
with gr.Accordion("Add Margins (bleed)", open=False): | |
with gr.Row(): | |
border_image_source = gr.Radio(label="Add Margins around which Image", choices=["Input Image", "Overlay Image"], value="Overlay Image") | |
with gr.Row(): | |
mask_width = gr.Number(label="Margins Width", value=10, minimum=0, maximum=100, precision=0) | |
mask_height = gr.Number(label="Margins Height", value=10, minimum=0, maximum=100, precision=0) | |
with gr.Row(): | |
margin_color = gr.ColorPicker(label="Margin Color", value="#333333FF", interactive=True) | |
margin_opacity = gr.Slider(0,100,95,0.5,label="Margin Opacity %") | |
with gr.Row(): | |
add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary") | |
with gr.Row(): | |
bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", show_download_button=True, show_share_button=True, elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered") | |
with gr.Accordion("Height Maps and 3D", open = False): | |
with gr.Row(): | |
with gr.Column(): | |
voxel_size_factor = gr.Slider(label="Voxel Size Factor", value=1.00, minimum=0.01, maximum=40.00, step=0.01) | |
with gr.Column(): | |
depth_image_source = gr.Radio(label="Depth Image Source", choices=["Input Image", "Output Image", "Overlay Image","Image with Margins"], value="Input Image") | |
with gr.Row(): | |
generate_depth_button = gr.Button("Generate Depth Map and 3D Model From Selected Image", elem_classes="solid", variant="secondary") | |
with gr.Row(): | |
depth_map_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgDepth") | |
model_output = gr.Model3D(label="3D Model", clear_color=[1.0, 1.0, 1.0, 0.25], key="Img3D", elem_classes="centered solid imgcontainer") | |
with gr.Row(): | |
gr.Examples(examples=[ | |
["assets//examples//hex_map_p1.png", False, True, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 15], | |
["assets//examples//hex_map_p1_overlayed.png", False, False, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 75], | |
["assets//examples//hex_flower_logo.png", False, True, -95,-95,100,100,-24,-2,190,30,2,"#FF8951", 50], | |
["assets//examples//hexed_fract_1.png", False, True, 0,0,0,0,0,0,10,0,0,"#000000", 5], | |
["assets//examples//tmpzt3mblvk.png", False, True, -20,10,0,0,-6,-2,35,30,1,"#ffffff", 0], | |
], | |
inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity], | |
elem_id="examples") | |
with gr.Row(): | |
gr.HTML(value=versions_html(), visible=True, elem_id="versions") | |
color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row]) | |
color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)]) | |
delete_button.click(fn=delete_color, inputs=[selected_row, color_display], outputs=[color_display]) | |
exclude_color_button.click(fn=add_color, inputs=[color_picker, gr.State(excluded_color_list)], outputs=[color_display, gr.State(excluded_color_list)]) | |
hex_button.click(hex_create, inputs=[hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list], outputs=[output_image, overlay_image], scroll_to_output=True) | |
generate_input_image.click( | |
fn=generate_input_image_click, | |
inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox, gr.State(False), gr.State(0.5), image_size_ratio], | |
outputs=[input_image], scroll_to_output=True | |
) | |
generate_depth_button.click( | |
fn=generate_depth_button_click, | |
inputs=[depth_image_source, voxel_size_factor, input_image, output_image, overlay_image, bordered_image_output], | |
outputs=[depth_map_output, model_output], scroll_to_output=True | |
) | |
model_textbox.change( | |
fn=update_prompt_notes, | |
inputs=model_textbox, | |
outputs=prompt_notes_label,preprocess=False | |
) | |
model_options.change( | |
fn=lambda x: (gr.update(visible=(x == "Manual Entry")), gr.update(value=x) if x != "Manual Entry" else gr.update()), | |
inputs=model_options, | |
outputs=[model_textbox, model_textbox] | |
) | |
model_options.change( | |
fn=update_prompt_notes, | |
inputs=model_options, | |
outputs=prompt_notes_label | |
) | |
composite_button.click( | |
fn=change_color, | |
inputs=[input_image, composite_color, composite_opacity], | |
outputs=[input_image] | |
) | |
#use conditioned_image as the input_image for generate_input_image_click | |
generate_input_image_from_gallery.click( | |
fn=generate_input_image_click, | |
inputs=[map_options, prompt_textbox, negative_prompt_textbox, model_textbox, gr.State(True), image_guidance_stength, image_size_ratio], | |
outputs=[input_image], scroll_to_output=True | |
) | |
# Update the state variable with the prerendered image filepath when an image is selected | |
prerendered_image_gallery.select( | |
fn=on_prerendered_gallery_selection, | |
inputs=None, | |
outputs=[gr.State(current_prerendered_image)], # Update the state with the selected image | |
show_api=False | |
) | |
# replace input image with selected gallery image | |
replace_input_image_button.click( | |
lambda: current_prerendered_image.value, | |
inputs=None, | |
outputs=[input_image], scroll_to_output=True | |
) | |
output_overlay_composite.change( | |
fn=combine_images_with_lerp, | |
inputs=[input_image, output_image, output_overlay_composite], | |
outputs=[overlay_image], scroll_to_output=True | |
) | |
output_blend_multiply_composite.change( | |
fn=multiply_and_blend_images, | |
inputs=[input_image, output_image, output_blend_multiply_composite], | |
outputs=[overlay_image], | |
scroll_to_output=True | |
) | |
output_alpha_composite.change( | |
fn=alpha_composite_with_control, | |
inputs=[input_image, output_image, output_alpha_composite], | |
outputs=[overlay_image], | |
scroll_to_output=True | |
) | |
add_border_button.click( | |
fn=lambda image_source, mask_w, mask_h, color, opacity, input_img, overlay_img: add_border(input_img if image_source == "Input Image" else overlay_img, mask_w, mask_h, update_color_opacity(detect_color_format(color), opacity * 2.55)), | |
inputs=[border_image_source, mask_width, mask_height, margin_color, margin_opacity, input_image, overlay_image], | |
outputs=[bordered_image_output], | |
scroll_to_output=True | |
) | |
(()) | |
if __name__ == "__main__": | |
beeuty.queue(default_concurrency_limit=1,max_size=12,api_open=False) | |
beeuty.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb") |