Spaces:
Running
on
Zero
Running
on
Zero
File size: 51,455 Bytes
6cf09ef 31931d9 527fcc4 31931d9 ced6a2a 31931d9 527fcc4 0808774 31931d9 2ce0081 9d91797 47fbc1a 2ce0081 47fbc1a 2ce0081 47fbc1a ced6a2a e34b08b ced6a2a e34b08b 091e9bc ced6a2a 31931d9 527fcc4 31931d9 527fcc4 31931d9 527fcc4 31931d9 47fbc1a ced6a2a 47fbc1a da0a17c 31931d9 527fcc4 31931d9 527fcc4 31931d9 527fcc4 31931d9 0808774 16e4012 0808774 7addd34 0808774 7addd34 0808774 7addd34 0808774 16e4012 7addd34 0808774 ced6a2a 31931d9 527fcc4 31931d9 527fcc4 31931d9 527fcc4 31931d9 7cff785 31931d9 7cff785 31931d9 2ce0081 31931d9 2ce0081 31931d9 2ce0081 31931d9 2ce0081 ced6a2a 31931d9 2ce0081 31931d9 2ce0081 31931d9 b271fe2 47fbc1a b271fe2 47fbc1a b271fe2 31931d9 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 31931d9 b271fe2 31931d9 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 6cf09ef b271fe2 31931d9 6cf09ef 31931d9 6cf09ef 47fbc1a 527fcc4 6cf09ef 31931d9 527fcc4 31931d9 527fcc4 31931d9 527fcc4 31931d9 47fbc1a 527fcc4 47fbc1a 527fcc4 31931d9 527fcc4 7addd34 527fcc4 47fbc1a 31931d9 6cf09ef 31931d9 47fbc1a c15bc86 47fbc1a 31931d9 6cf09ef 527fcc4 47fbc1a 31931d9 527fcc4 31931d9 527fcc4 31931d9 527fcc4 31931d9 527fcc4 31931d9 527fcc4 47fbc1a 31931d9 527fcc4 47fbc1a 527fcc4 ced6a2a 527fcc4 da0a17c 527fcc4 31931d9 527fcc4 ced6a2a 47fbc1a ced6a2a 47fbc1a ced6a2a 47fbc1a ced6a2a 47fbc1a ced6a2a 47fbc1a ced6a2a 47fbc1a ced6a2a 47fbc1a ced6a2a 7addd34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 |
# utils/image_utils.py
import os
from io import BytesIO
import cairosvg
import base64
import numpy as np
#from decimal import ROUND_CEILING
from PIL import Image, ImageChops, ImageDraw, ImageEnhance, ImageFilter, ImageDraw, ImageOps, ImageMath
from typing import List, Union, is_typeddict
#import numpy as np
#import math
from pathlib import Path
from utils.constants import default_lut_example_img, PRE_RENDERED_MAPS_JSON_LEVELS
from utils.color_utils import (
detect_color_format,
update_color_opacity
)
from utils.file_utils import rename_file_to_lowercase_extension, get_file_parts
def save_image_to_temp_png(image_source, user_dir: str = None, file_name: str = None):
"""
Opens an image from a file path, URL, or DataURL and saves it as a PNG in the user's temporary directory.
Parameters:
image_source (str, dict or PIL.Image.Image): The source of the image to open.
Returns:
str: The file path of the saved PNG image in the temporary directory.
"""
import tempfile
import uuid
# Open the image using the existing utility function
img = open_image(image_source)
# Ensure the image is in a format that supports PNG (convert if necessary)
if img.mode not in ("RGB", "RGBA"):
img = img.convert("RGBA")
# Generate a unique filename in the system temporary directory
if user_dir is None:
user_dir = tempfile.gettempdir()
if file_name is None:
file_name = "{uuid.uuid4()}"
temp_filepath = os.path.join(user_dir, file_name.lower() + ".png")
os.makedirs(user_dir, exist_ok=True)
# Save the image as PNG
img.save(temp_filepath, format="PNG")
return temp_filepath
def get_image_from_dict(image_path):
if isinstance(image_path, dict) :
if 'composite' in image_path:
image_path = image_path.get('composite')
elif 'image' in image_path:
image_path = image_path.get('image')
elif 'background' in image_path:
image_path = image_path.get('background')
else:
print("\n Unknown image dictionary.\n")
raise UserWarning("Unknown image dictionary.")
return image_path, True
else:
return image_path, False
def open_image(image_path):
"""
Opens an image from a file path or URL, or decodes a DataURL string into an image.
Supports SVG and ICO by converting them to PNG.
Parameters:
image_path (str): The file path, URL, or DataURL string of the image to open.
Returns:
Image: A PIL Image object of the opened image.
Raises:
Exception: If there is an error opening the image.
"""
if isinstance(image_path, Image.Image):
return image_path
elif isinstance(image_path, dict):
image_path, is_dict = get_image_from_dict(image_path)
image_path = rename_file_to_lowercase_extension(image_path)
import requests
try:
# Strip leading and trailing double quotation marks, if present
image_path = image_path.strip('"')
if image_path.startswith('http'):
response = requests.get(image_path)
if image_path.lower().endswith('.svg'):
png_data = cairosvg.svg2png(bytestring=response.content)
img = Image.open(BytesIO(png_data))
elif image_path.lower().endswith('.ico'):
img = Image.open(BytesIO(response.content)).convert('RGBA')
else:
img = Image.open(BytesIO(response.content))
elif image_path.startswith('data'):
encoded_data = image_path.split(',')[1]
decoded_data = base64.b64decode(encoded_data)
if image_path.lower().endswith('.svg'):
png_data = cairosvg.svg2png(bytestring=decoded_data)
img = Image.open(BytesIO(png_data))
elif image_path.lower().endswith('.ico'):
img = Image.open(BytesIO(decoded_data)).convert('RGBA')
else:
img = Image.open(BytesIO(decoded_data))
else:
if image_path.lower().endswith('.svg'):
png_data = cairosvg.svg2png(url=image_path)
img = Image.open(BytesIO(png_data))
elif image_path.lower().endswith('.ico'):
img = Image.open(image_path).convert('RGBA')
else:
img = Image.open(image_path)
except Exception as e:
raise Exception(f'Error opening image: {e}')
return img
def build_prerendered_images(images_list):
"""
Opens a list of images from file paths, URLs, or DataURL strings.
Parameters:
images_list (list): A list of file paths, URLs, or DataURL strings of the images to open.
Returns:
list: A list of PIL Image objects of the opened images.
"""
return [open_image(image) for image in images_list]
# Example usage
# filtered_maps = get_maps_with_quality_less_than(3)
# print(filtered_maps)
def build_prerendered_images_by_quality(quality_limit, key='file'):
"""
Retrieve and sort file paths from PRE_RENDERED_MAPS_JSON_LEVELS where quality is <= quality_limit.
Sorts by quality and case-insensitive alphanumeric key.
Args:
quality_limit (int): Maximum quality threshold
key (str): Key to extract file path from map info (default: 'file')
Returns:
tuple: (sorted file paths list, list of corresponding map names)
"""
# Pre-compute lowercase alphanumeric key once per item
def get_sort_key(item):
name, info = item
return (info['quality'], ''.join(c for c in name.lower() if c.isalnum()))
# Single pass: sort and filter
filtered_maps = [
(info[key].replace("\\", "/"), name)
for name, info in sorted(PRE_RENDERED_MAPS_JSON_LEVELS.items(), key=get_sort_key)
if info['quality'] <= quality_limit
]
# Split into separate lists efficiently
if filtered_maps:
#file_paths, map_names = zip(*filtered_maps)
#return (build_prerendered_images(file_paths), list(map_names))
return [(open_image(file_path), map_name) for file_path, map_name in filtered_maps]
return (None,"")
def build_encoded_images(images_list):
"""
Encodes a list of images to base64 strings.
Parameters:
images_list (list): A list of file paths, URLs, DataURL strings, or PIL Image objects of the images to encode.
Returns:
list: A list of base64-encoded strings of the images.
"""
return [image_to_base64(image) for image in images_list]
def image_to_base64(image):
"""
Encodes an image to a base64 string.
Supports ICO files by converting them to PNG with RGBA channels.
Parameters:
image (str or PIL.Image.Image): The file path, URL, DataURL string, or PIL Image object of the image to encode.
Returns:
str: A base64-encoded string of the image.
"""
buffered = BytesIO()
if isinstance(image, str):
image = open_image(image)
image.save(buffered, format="PNG")
return "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode()
def change_color(image, color, opacity=0.75):
"""
Changes the color of an image by overlaying it with a specified color and opacity.
Parameters:
image (str or PIL.Image.Image): The file path, URL, DataURL string, or PIL Image object of the image to change.
color (str or tuple): The color to overlay on the image.
opacity (float): The opacity of the overlay color (0.0 to 1.0).
Returns:
PIL.Image.Image: The image with the color changed.
"""
if type(image) is str:
image = open_image(image)
try:
# Convert the color to RGBA format
rgba_color = detect_color_format(color)
rgba_color = update_color_opacity(rgba_color, opacity)
# Convert the image to RGBA mode
image = image.convert("RGBA")
# Create a new image with the same size and mode
new_image = Image.new("RGBA", image.size, rgba_color)
# Composite the new image with the original image
result = Image.alpha_composite(image, new_image)
except Exception as e:
print(f"Error changing color: {e}")
return image
return result
def convert_str_to_int_or_zero(value):
"""
Converts a string to an integer, or returns zero if the conversion fails.
Parameters:
value (str): The string to convert.
Returns:
int: The converted integer, or zero if the conversion fails.
"""
try:
return int(value)
except ValueError:
return 0
def upscale_image(image, scale_factor):
"""
Upscales an image by a given scale factor using the LANCZOS filter.
Parameters:
image (PIL.Image.Image): The input image to be upscaled.
scale_factor (float): The factor by which to upscale the image.
Returns:
PIL.Image.Image: The upscaled image.
"""
# Calculate the new size
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Upscale the image using the LANCZOS filter
upscaled_image = image.resize((new_width, new_height), Image.LANCZOS)
return upscaled_image
def crop_and_resize_image(image, width, height):
"""
Crops the image to a centered square and resizes it to the specified width and height.
Parameters:
image (PIL.Image.Image): The input image to be cropped and resized.
width (int): The desired width of the output image.
height (int): The desired height of the output image.
Returns:
PIL.Image.Image: The cropped and resized image.
"""
# Get original dimensions
original_width, original_height = image.size
# Determine the smaller dimension to make a square crop
min_dim = min(original_width, original_height)
# Calculate coordinates for cropping to a centered square
left = (original_width - min_dim) // 2
top = (original_height - min_dim) // 2
right = left + min_dim
bottom = top + min_dim
# Crop the image
cropped_image = image.crop((left, top, right, bottom))
# Resize the image to the desired dimensions
resized_image = cropped_image.resize((width, height), Image.LANCZOS)
return resized_image
def resize_image_with_aspect_ratio(image, target_width, target_height):
"""
Resizes the image to fit within the target dimensions while maintaining aspect ratio.
If the aspect ratio does not match, the image will be padded with black pixels.
Parameters:
image (PIL.Image.Image): The input image to be resized.
target_width (int): The target width.
target_height (int): The target height.
Returns:
PIL.Image.Image: The resized image.
"""
# Calculate aspect ratios
original_width, original_height = image.size
target_aspect = target_width / target_height
original_aspect = original_width / original_height
#print(f"Original size: {image.size}\ntarget_aspect: {target_aspect}\noriginal_aspect: {original_aspect}\n")
# Decide whether to fit width or height
if original_aspect > target_aspect:
# Image is wider than target aspect ratio
new_width = target_width
new_height = int(target_width / original_aspect)
else:
# Image is taller than target aspect ratio
new_height = target_height
new_width = int(target_height * original_aspect)
# Resize the image
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
#print(f"Resized size: {resized_image.size}\n")
# Create a new image with target dimensions and black background
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
# Paste the resized image onto the center of the new image
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def lerp_imagemath(img1, img2, alpha_percent: int = 50):
"""
Performs linear interpolation (LERP) between two images based on the given alpha value.
Parameters:
img1 (str or PIL.Image.Image): The first image or its file path.
img2 (str or PIL.Image.Image): The second image or its file path.
alpha (int): The interpolation factor (0 to 100).
Returns:
PIL.Image.Image: The interpolated image.
"""
if isinstance(img1, str):
img1 = open_image(img1)
if isinstance(img2, str):
img2 = open_image(img2)
# Ensure both images are in the same mode (e.g., RGBA)
img1 = img1.convert('RGBA')
img2 = img2.convert('RGBA')
# Convert images to NumPy arrays
arr1 = np.array(img1, dtype=np.float32)
arr2 = np.array(img2, dtype=np.float32)
# Perform linear interpolation
alpha = alpha_percent / 100.0
result_arr = (arr1 * (1 - alpha)) + (arr2 * alpha)
# Convert the result back to a PIL image
result_img = Image.fromarray(np.uint8(result_arr))
#result_img.show()
return result_img
def shrink_and_paste_on_blank(current_image, mask_width, mask_height, blank_color:tuple[int, int, int, int] = (0,0,0,0)):
"""
Decreases size of current_image by mask_width pixels from each side,
then adds a mask_width width transparent frame,
so that the image the function returns is the same size as the input.
Parameters:
current_image (PIL.Image.Image): The input image to transform.
mask_width (int): Width in pixels to shrink from each side.
mask_height (int): Height in pixels to shrink from each side.
blank_color (tuple): The color of the blank frame (default is transparent).
Returns:
PIL.Image.Image: The transformed image.
"""
# calculate new dimensions
width, height = current_image.size
new_width = width - (2 * mask_width)
new_height = height - (2 * mask_height)
# resize and paste onto blank image
prev_image = current_image.resize((new_width, new_height))
blank_image = Image.new("RGBA", (width, height), blank_color)
blank_image.paste(prev_image, (mask_width, mask_height))
return blank_image
def multiply_and_blend_images(base_image, image2, alpha_percent=50):
"""
Multiplies two images and blends the result with the original image.
Parameters:
image1 (PIL.Image.Image): The first input image.
image2 (PIL.Image.Image): The second input image.
alpha (float): The blend factor (0.0 to 100.0) for blending the multiplied result with the original image.
Returns:
PIL.Image.Image: The blended image.
"""
name = None
directory = None
alpha = alpha_percent / 100.0
if isinstance(base_image, str):
directory, _, name,_,_ = get_file_parts(base_image)
base_image = open_image(base_image)
if isinstance(image2, str):
image2 = open_image(image2)
# Ensure both images are in the same mode and size
base_image = base_image.convert('RGBA')
image2 = image2.convert('RGBA')
image2 = image2.resize(base_image.size)
# Multiply the images
multiplied_image = ImageChops.multiply(base_image, image2)
# Blend the multiplied result with the original
blended_image = Image.blend(base_image, multiplied_image, alpha)
if name is not None:
new_image_path = os.path.join(directory, name + f"_mb{str(alpha_percent)}.png")
blended_image.save(new_image_path)
return new_image_path
return blended_image
def alpha_composite_with_control(base_image, image_with_alpha, alpha_percent=100):
"""
Overlays image_with_alpha onto base_image with controlled alpha transparency.
Parameters:
base_image (PIL.Image.Image): The base image.
image_with_alpha (PIL.Image.Image): The image to overlay with an alpha channel.
alpha_percent (float): The multiplier for the alpha channel (0.0 to 100.0).
Returns:
PIL.Image.Image: The resulting image after alpha compositing.
"""
name = None
directory = None
image_with_alpha, isdict = get_image_from_dict(image_with_alpha)
alpha_multiplier = alpha_percent / 100.0
if isinstance(base_image, str):
directory, _, name,_, new_ext = get_file_parts(base_image)
base_image = open_image(base_image)
if isinstance(image_with_alpha, str):
image_with_alpha = open_image(image_with_alpha)
# Ensure both images are in RGBA mode
base_image = base_image.convert('RGBA')
image_with_alpha = image_with_alpha.convert('RGBA')
# Extract the alpha channel and multiply by alpha_multiplier
alpha_channel = image_with_alpha.split()[3]
alpha_channel = alpha_channel.point(lambda p: p * alpha_multiplier)
# Apply the modified alpha channel back to the image
image_with_alpha.putalpha(alpha_channel)
# Composite the images
result = Image.alpha_composite(base_image, image_with_alpha)
if name is not None:
new_image_path = os.path.join(directory, name + f"_alpha{str(alpha_percent)}.png")
result.save(new_image_path)
return new_image_path
return result
def apply_alpha_mask(image, mask_image, invert = False):
"""
Applies a mask image as the alpha channel of the input image.
Parameters:
image (PIL.Image.Image): The image to apply the mask to.
mask_image (PIL.Image.Image): The alpha mask to apply.
invert (bool): Whether to invert the mask (default is False).
Returns:
PIL.Image.Image: The image with the applied alpha mask.
"""
# Resize the mask to match the current image size
mask_image = resize_and_crop_image(mask_image, image.width, image.height).convert('L') # convert to grayscale
if invert:
mask_image = ImageOps.invert(mask_image)
# Apply the mask as the alpha layer of the current image
result_image = image.copy()
result_image.putalpha(mask_image)
return result_image
def resize_and_crop_image(image: Image, new_width: int = 512, new_height: int = 512) -> Image:
"""
Resizes and crops an image to a specified width and height. This ensures that the entire new_width and new_height
dimensions are filled by the image, and the aspect ratio is maintained.
Parameters:
image (PIL.Image.Image): The image to be resized and cropped.
new_width (int): The desired width of the new image (default is 512).
new_height (int): The desired height of the new image (default is 512).
Returns:
PIL.Image.Image: The resized and cropped image.
"""
# Get the dimensions of the original image
orig_width, orig_height = image.size
# Calculate the aspect ratios of the original and new images
orig_aspect_ratio = orig_width / float(orig_height)
new_aspect_ratio = new_width / float(new_height)
# Calculate the new size of the image while maintaining aspect ratio
if orig_aspect_ratio > new_aspect_ratio:
# The original image is wider than the new image, so we need to crop the sides
resized_width = int(new_height * orig_aspect_ratio)
resized_height = new_height
left_offset = (resized_width - new_width) // 2
top_offset = 0
else:
# The original image is taller than the new image, so we need to crop the top and bottom
resized_width = new_width
resized_height = int(new_width / orig_aspect_ratio)
left_offset = 0
top_offset = (resized_height - new_height) // 2
# Resize the image with Lanczos resampling filter
resized_image = image.resize((resized_width, resized_height), resample=Image.Resampling.LANCZOS)
# Crop the image to fill the entire height and width of the new image
cropped_image = resized_image.crop((left_offset, top_offset, left_offset + new_width, top_offset + new_height))
return cropped_image
##################################################### LUTs ############################################################
def is_3dlut_row(row: List[str]) -> bool:
"""
Check if one line in the file has exactly 3 numeric values.
Parameters:
row (list): A list of strings representing the values in a row.
Returns:
bool: True if the row has exactly 3 numeric values, False otherwise.
"""
try:
row_values = [float(val) for val in row]
return len(row_values) == 3
except ValueError:
return False
def get_lut_type(path_lut: Union[str, os.PathLike], num_channels: int = 3) -> str:
with open(path_lut) as f:
lines = f.read().splitlines()
lut_type = "3D" # Initially assume 3D LUT
size = None
table = []
# Parse the file
for line in lines:
line = line.strip()
if line.startswith("#") or not line:
continue # Skip comments and empty lines
parts = line.split()
if parts[0] == "LUT_3D_SIZE":
size = int(parts[1])
lut_type = "3D"
elif parts[0] == "LUT_1D_SIZE":
size = int(parts[1])
lut_type = "1D"
elif is_3dlut_row(parts):
table.append(tuple(float(val) for val in parts))
return lut_type
def read_3d_lut(path_lut: Union[str, os.PathLike], num_channels: int = 3) -> ImageFilter.Color3DLUT:
"""
Read LUT from a raw file.
Each line in the file is considered part of the LUT table. The function
reads the file, parses the rows, and constructs a Color3DLUT object.
Args:
path_lut: A string or os.PathLike object representing the path to the LUT file.
num_channels: An integer specifying the number of color channels in the LUT (default is 3).
Returns:
An instance of ImageFilter.Color3DLUT representing the LUT.
Raises:
FileNotFoundError: If the LUT file specified by path_lut does not exist.
"""
with open(path_lut) as f:
lut_raw = f.read().splitlines()
size = round(len(lut_raw) ** (1 / 3))
row2val = lambda row: tuple([float(val) for val in row.split(" ")])
lut_table = [row2val(row) for row in lut_raw if is_3dlut_row(row.split(" "))]
return ImageFilter.Color3DLUT(size, lut_table, num_channels)
def apply_1d_lut(image, lut_file, intensity: int = 100, lut_scale: float = 1.0, lut_offset: float = 0.0):
"""
Apply a 1D LUT to an image with intensity, scale, and offset control.
Args:
image: PIL Image object.
lut_file: Path to the 1D LUT file.
intensity: Integer from -200 to 200 controlling LUT strength (default 100).
lut_scale: Float to scale LUT colors (default 1.0).
lut_offset: Float to offset LUT colors (default 0.0).
Returns:
PIL Image object with the adjusted LUT applied.
"""
import numpy as np
# Compute blending factor
alpha = intensity / 100.0 # Ranges from -2.0 to 2.0
# Read the 1D LUT
with open(lut_file) as f:
lines = f.read().splitlines()
table = []
for line in lines:
if not line.startswith(("#", "LUT", "TITLE", "DOMAIN")) and line.strip():
values = [float(v) for v in line.split()]
table.append(tuple(values))
# Adjust LUT table with scale and offset
adjusted_table = [
tuple(np.clip(val * lut_scale + lut_offset, 0, 1) for val in color)
for color in table
]
# If intensity is negative, use inverted LUT
if alpha < 0:
adjusted_table = [(1 - r, 1 - g, 1 - b) for r, g, b in adjusted_table]
alpha = -alpha # Use positive alpha for blending
# Convert image to grayscale
if image.mode != 'L':
image = image.convert('L')
img_array = np.array(image) / 255.0 # Normalize to [0, 1]
# Map grayscale values to colors
lut_size = len(adjusted_table)
indices = (img_array * (lut_size - 1)).astype(int)
colors = np.array(adjusted_table)[indices] # LUT-mapped colors, shape (H, W, 3)
# Create original colors (grayscale replicated across RGB)
original_colors = np.repeat(img_array[:, :, np.newaxis], 3, axis=2) # Shape (H, W, 3)
# Blend original and LUT-mapped colors
blended_colors = original_colors * (1 - alpha) + colors * alpha
blended_colors = np.clip(blended_colors, 0, 1) # Ensure values stay in [0, 1]
# Create RGB image
rgb_image = Image.fromarray((blended_colors * 255).astype(np.uint8), mode='RGB')
return rgb_image
def invert_lut(original_lut: ImageFilter.Color3DLUT) -> ImageFilter.Color3DLUT:
"""
Create an inverted LUT by reversing the order of entries to simulate a 180-degree rotation.
Args:
original_lut: The original Color3DLUT object.
Returns:
A new Color3DLUT object with inverted entries.
"""
# Extract the table and size from the original LUT
size = original_lut.size[0] # Assuming cubic LUT
table = original_lut.table
# Reverse the table to simulate a 180-degree rotation
inverted_table = table[::-1]
# Create and return the inverted LUT with the same number of channels
return ImageFilter.Color3DLUT(size, inverted_table, original_lut.channels)
def apply_3d_lut(img: Image, lut_path: str = "", lut: ImageFilter.Color3DLUT = None) -> Image:
"""
Apply a LUT to an image and return a PIL Image with the LUT applied.
The function applies the LUT to the input image using the filter() method of the PIL Image class.
Args:
img: A PIL Image object to which the LUT should be applied.
lut_path: A string representing the path to the LUT file (optional if lut argument is provided).
lut: An instance of ImageFilter.Color3DLUT representing the LUT (optional if lut_path is provided).
Returns:
A PIL Image object with the LUT applied.
Raises:
ValueError: If both lut_path and lut arguments are not provided.
"""
if lut is None:
if lut_path == "":
raise ValueError("Either lut_path or lut argument must be provided.")
lut = read_3d_lut(lut_path)
return img.filter(lut)
def apply_lut_simple(image, lut_filename: str, intensity: int = 100) -> Image:
"""
Apply a LUT to an image with intensity control.
Args:
image: PIL Image object or path to image file.
lut_filename: Path to the LUT file.
intensity: Integer from -200 to 200 controlling LUT strength (default 100).
Returns:
PIL Image object with the adjusted LUT applied.
"""
import numpy as np
# Handle image input as string
if isinstance(image, str):
image = open_image(image)
if lut_filename is not None:
lut_type = get_lut_type(lut_filename)
if lut_type == "3D":
# Read the original 3D LUT
original_lut = read_3d_lut(lut_filename)
# Apply the original LUT to the image
lutted_image = image.filter(original_lut)
# Compute blending factor
alpha = intensity / 100.0 # Ranges from -2.0 to 2.0
# Handle special cases
if alpha == 0:
return image
elif alpha == 1:
return lutted_image
else:
# Convert images to NumPy arrays for blending
img_array = np.array(image).astype(float) / 255.0
lutted_array = np.array(lutted_image).astype(float) / 255.0
blended_array = img_array * (1 - alpha) + lutted_array * alpha
blended_array = np.clip(blended_array, 0, 1)
blended_image = Image.fromarray((blended_array * 255).astype(np.uint8))
return blended_image
else:
# Apply 1D LUT with intensity (already correct)
image = apply_1d_lut(image, lut_filename, intensity)
return image
def apply_lut(image, lut_filename: str, intensity: int = 100, lut_scale: float = 1.0, lut_offset: float = 0.0) -> Image:
"""
Apply a LUT to an image with intensity, scale, and offset adjustments.
Args:
image: PIL Image object or path to image file.
lut_filename: Path to the LUT file (.cube for 3D LUT or text file for 1D LUT).
intensity: Integer from -200 to 200 controlling LUT strength (default 100).
lut_scale: Float to scale LUT colors (default 1.0).
lut_offset: Float to offset LUT colors (default 0.0).
Returns:
PIL Image object with the adjusted LUT applied.
"""
# Handle image input as string
if isinstance(image, str):
image = Image.open(image).convert('RGB')
if lut_filename is None:
return image
lut_type = get_lut_type(lut_filename)
if lut_type == "3D":
# Read the original 3D LUT
# Read the original 3D LUT using the external function
original_lut = read_3d_lut(lut_filename)
# Create the inverted LUT
inverted_lut = invert_lut(original_lut)
# Define a function to adjust LUT entries with scale and offset
def adjust_entry(r, g, b):
r = np.clip(r * lut_scale + lut_offset, 0, 1)
g = np.clip(g * lut_scale + lut_offset, 0, 1)
b = np.clip(b * lut_scale + lut_offset, 0, 1)
return (r, g, b)
# Apply scale and offset adjustments to both LUTs
adjusted_original_lut = original_lut.transform(adjust_entry)
adjusted_inverted_lut = inverted_lut.transform(adjust_entry)
# Compute blending factor from intensity
alpha = intensity / 100.0 # Ranges from -2.0 to 2.0
# Select the appropriate LUT based on intensity
if alpha >= 0:
lut_to_use = adjusted_original_lut
else:
lut_to_use = adjusted_inverted_lut
alpha = -alpha # Use positive alpha for blending with inverted LUT
# Apply the selected LUT to the image
lutted_image = image.filter(lut_to_use)
# Convert images to NumPy arrays for blending
original_array = np.array(image, dtype=np.float32) / 255.0
lutted_array = np.array(lutted_image, dtype=np.float32) / 255.0
# Blend the original and LUT-applied images
blended_array = original_array * (1 - alpha) + lutted_array * alpha
blended_array = np.clip(blended_array, 0, 1)
# Convert back to PIL Image
final_image = Image.fromarray((blended_array * 255).astype(np.uint8))
return final_image
else: # 1D LUT
# Delegate to the modified apply_1d_lut function
return apply_1d_lut(image, lut_filename, intensity, lut_scale, lut_offset)
def show_lut(lut_filename: str, lut_example_image: Image = default_lut_example_img, intensity: int = 100) -> Image:
if lut_example_image is None:
lut_example_image = default_lut_example_img
if lut_filename is not None:
try:
lut_example_image = apply_lut(lut_example_image, lut_filename, intensity)
except Exception as e:
print(f"BAD LUT: Error applying LUT {str(e)}.")
else:
lut_example_image = open_image(default_lut_example_img)
return lut_example_image
def apply_1d_lut_simple(image, lut_file):
# Read the 1D LUT
with open(lut_file) as f:
lines = f.read().splitlines()
table = []
for line in lines:
if not line.startswith(("#", "LUT", "TITLE", "DOMAIN")) and line.strip():
values = [float(v) for v in line.split()]
table.append(tuple(values))
# Convert image to grayscale
if image.mode != 'L':
image = image.convert('L')
img_array = np.array(image) / 255.0 # Normalize to [0, 1]
# Map grayscale values to colors
lut_size = len(table)
indices = (img_array * (lut_size - 1)).astype(int)
colors = np.array(table)[indices]
# Create RGB image
rgb_image = Image.fromarray((colors * 255).astype(np.uint8), mode='RGB')
return rgb_image
def apply_lut_to_image_path(lut_filename: str, image_path: str, intensity: int = 100 ) -> tuple[Image, str]:
"""
Apply a LUT to an image and return the result.
Supports ICO files by converting them to PNG with RGBA channels.
Args:
lut_filename: A string representing the path to the LUT file.
image_path: A string representing the path to the input image.
Returns:
tuple: A tuple containing the PIL Image object with the LUT applied and the new image path as a string.
"""
import gradio as gr
img_lut = None
if image_path is None:
raise UserWarning("No image provided.")
return None, None
# Split the path into directory and filename
directory, file_name = os.path.split(image_path)
lut_directory, lut_file_name = os.path.split(lut_filename)
# Split the filename into name and extension
name, ext = os.path.splitext(file_name)
lut_name, lut_ext = os.path.splitext(lut_file_name)
# Convert the extension to lowercase
new_ext = ext.lower()
path = Path(image_path)
img = open_image(image_path)
if not ((path.suffix.lower() == '.png' and img.mode == 'RGBA')):
if image_path.lower().endswith(('.jpg', '.jpeg')):
img, new_image_path = convert_jpg_to_rgba(path)
elif image_path.lower().endswith('.ico'):
img, new_image_path = convert_to_rgba_png(image_path)
elif image_path.lower().endswith(('.gif', '.webp')):
img, new_image_path = convert_to_rgba_png(image_path)
else:
img, new_image_path = convert_to_rgba_png(image_path)
if image_path != new_image_path:
delete_image(image_path)
else:
# ensure the file extension is lower_case, otherwise leave as is
new_filename = name + new_ext
new_image_path = os.path.join(directory, new_filename)
# Apply the LUT to the image
if (lut_filename is not None and img is not None):
try:
img_lut = apply_lut(img, lut_filename, intensity)
except Exception as e:
print(f"BAD LUT: Error applying LUT {str(e)}.")
if img_lut is not None:
new_filename = name + "_"+ lut_name + new_ext
new_image_path = os.path.join(directory, new_filename)
#delete_image(image_path) - renamed with lut name
img = img_lut
img.save(new_image_path, format='PNG')
print(f"Image with LUT saved as {new_image_path}")
return img, gr.update(value=str(new_image_path))
def png_to_cube(input_png_path, output_cube_path, lut_size=17):
# Example usage
# png_to_cube(input_file, output_file, lut_size=17)
# Open the PNG file
img = Image.open(input_png_path)
# Ensure the image is 512x512
if img.size != (512, 512):
raise ValueError("Input PNG must be 512x512 pixels.")
# Convert to RGB and normalize to 0-1 range
pixels = np.array(img.convert("RGB")) / 255.0
# Calculate the step size for sampling (512 / 17 ≈ 30 pixels per step)
step = 512 // lut_size
# Open the output .cube file
with open(output_cube_path, "w") as f:
# Write .cube header
f.write('# Charles Fettinger by PNG to LUT converter\n')
f.write('TITLE "Converted LUT"\n')
f.write(f'LUT_3D_SIZE {lut_size}\n')
f.write('DOMAIN_MIN 0.0 0.0 0.0\n')
f.write('DOMAIN_MAX 1.0 1.0 1.0\n')
# Iterate over the 3D LUT grid (R, G, B)
for b in range(lut_size): # Blue channel
for g in range(lut_size): # Green channel
for r in range(lut_size): # Red channel
# Map LUT coordinates to PNG coordinates
# Assume the PNG is laid out with:
# - X-axis (horizontal) = Red
# - Y-axis (vertical) = Green + Blue slices
x = r * step + step // 2 # Center of each Red step
y = (g + b * lut_size) * step + step // 2 # Green + Blue offset
# Ensure coordinates stay within bounds
x = min(x, 511)
y = min(y, 511)
# Get RGB value from the PNG
rgb = pixels[y, x]
# Write RGB values to .cube file (normalized 0-1)
f.write(f"{rgb[0]:.6f} {rgb[1]:.6f} {rgb[2]:.6f}\n")
print(f"Conversion complete. LUT saved to {output_cube_path}")
def png_8x8_to_3d_cube(input_png_path, output_cube_path, lut_size=8):
# Example usage: png_8x8_to_3d_cube(input_file, output_file, lut_size=8)
# Open the PNG file
img = Image.open(input_png_path)
# Ensure the image is 512x512
if img.size != (512, 512):
raise ValueError("Input PNG must be 512x512 pixels.")
# Convert to RGB and normalize to 0-1 range
pixels = np.array(img.convert("RGB")) / 255.0
# Grid parameters
grid_size = 8 # 8x8 boxes
box_size = 512 // grid_size # 64 pixels per box
step = box_size // lut_size # 64 ÷ 8 = 8 pixels per step
# Open the output .cube file
with open(output_cube_path, "w") as f:
# Write .cube header for 3D LUT
f.write('# Charles Fettinger 3D LUT from 8x8 PNG\n')
f.write('TITLE "Converted 8x8x8 LUT"\n')
f.write(f'LUT_3D_SIZE {lut_size}\n')
f.write('DOMAIN_MIN 0.0 0.0 0.0\n')
f.write('DOMAIN_MAX 1.0 1.0 1.0\n')
# Iterate over the 3D LUT (R, G, B)
for b in range(lut_size): # Blue axis (rows of the 8x8 grid)
for g in range(lut_size): # Green axis (columns of the 8x8 grid)
for r in range(lut_size): # Red axis (within each box)
# Map to the 8x8 grid
box_row = b # Blue selects the row
box_col = g # Green selects the column
# Starting coordinates of the current box
box_x = box_col * box_size
box_y = box_row * box_size
# Sample within the box (R varies horizontally, G vertically)
x = box_x + r * step + step // 2 # Center of Red step
y = box_y + g * step + step // 2 # Center of Green step (reuse g for consistency)
# Ensure coordinates stay within bounds
x = min(x, 511)
y = min(y, 511)
# Get RGB value from the PNG
rgb = pixels[y, x]
# Write RGB values to .cube file
f.write(f"{rgb[0]:.6f} {rgb[1]:.6f} {rgb[2]:.6f}\n")
print(f"3D LUT conversion complete. Saved to {output_cube_path}")
def png_8x8_to_3d_cube_inverted(input_png_path, output_cube_path, lut_size=8):
# Open the PNG file
img = Image.open(input_png_path)
if img.size != (512, 512):
raise ValueError("Input PNG must be 512x512 pixels.")
# Convert to RGB and normalize to 0-1 range
pixels = np.array(img.convert("RGB")) / 255.0
# Grid parameters
grid_size = 8
box_size = 512 // grid_size # 64 pixels per box
step = box_size // lut_size # 8 pixels per step
# Write the .cube file
with open(output_cube_path, "w") as f:
f.write('# Charles Fettinger 3D LUT from 8x8 PNG (inverted)\n')
f.write('TITLE "Converted 8x8x8 LUT (inverted)"\n')
f.write(f'LUT_3D_SIZE {lut_size}\n')
f.write('DOMAIN_MIN 0.0 0.0 0.0\n')
f.write('DOMAIN_MAX 1.0 1.0 1.0\n')
for b in range(lut_size):
for g in range(lut_size):
for r in range(lut_size):
box_row = b
box_col = g
box_x = box_col * box_size
box_y = box_row * box_size
x = box_x + r * step + step // 2
y = box_y + g * step + step // 2
# Sample from the rotated position
x_rev = 511 - x
y_rev = 511 - y
rgb = pixels[y_rev, x_rev]
f.write(f"{rgb[0]:.6f} {rgb[1]:.6f} {rgb[2]:.6f}\n")
print(f"Inverted 3D LUT conversion complete. Saved to {output_cube_path}")
############################################# RGBA ###########################################################
def convert_rgb_to_rgba_safe(image: Image) -> Image:
"""
Converts an RGB image to RGBA by adding an alpha channel.
Ensures that the original image remains unaltered.
Parameters:
image (PIL.Image.Image): The RGB image to convert.
Returns:
PIL.Image.Image: The converted RGBA image.
"""
if image.mode != 'RGB':
if image.mode == 'RGBA':
return image
elif image.mode == 'P':
# Convert palette image to RGBA
image = image.convert('RGB')
else:
raise ValueError("Unsupported image mode for conversion to RGBA.")
# Create a copy of the image to avoid modifying the original
rgba_image = image.copy()
# Optionally, set a default alpha value (e.g., fully opaque)
alpha = Image.new('L', rgba_image.size, 255) # 255 for full opacity
rgba_image.putalpha(alpha)
return rgba_image
# Example usage
# convert_jpg_to_rgba('input.jpg', 'output.png')
def convert_jpg_to_rgba(input_path) -> tuple[Image, str]:
"""
Convert a JPG image to RGBA format and save it as a PNG.
Args:
input_path (str or Path): Path to the input JPG image file.
Raises:
FileNotFoundError: If the input file does not exist.
ValueError: If the input file is not a JPG.
OSError: If there's an error reading or writing the file.
Returns:
tuple: A tuple containing the RGBA image and the output path as a string.
"""
try:
# Convert input_path to Path object if it's a string
input_path = Path(input_path)
output_path = input_path.with_suffix('.png')
# Check if the input file exists
if not input_path.exists():
#if file was renamed to lower case, update the input path
input_path = output_path
if not input_path.exists():
raise FileNotFoundError(f"The file {input_path} does not exist.")
# Check file extension first to skip unnecessary processing
if input_path.suffix.lower() not in ('.jpg', '.jpeg'):
print(f"Skipping conversion: {input_path} is not a JPG or JPEG file.")
return None, None
print(f"Converting to PNG: {input_path} is a JPG or JPEG file.")
# Open the image file
with Image.open(input_path) as img:
# Convert the image to RGBA mode
rgba_img = img.convert('RGBA')
# Ensure the directory exists for the output file
output_path.parent.mkdir(parents=True, exist_ok=True)
# Save the image with RGBA mode as PNG
rgba_img.save(output_path)
except FileNotFoundError as e:
print(f"Error: {e}")
except ValueError as e:
print(f"Error: {e}")
except OSError as e:
print(f"Error: An OS error occurred while processing the image - {e}")
except Exception as e:
print(f"An unexpected error occurred: {e}")
return rgba_img, str(output_path)
def convert_to_rgba_png(file_path: str) -> tuple[Image, str]:
"""
Converts an image to RGBA PNG format and saves it with the same base name and a .png extension.
Supports ICO files.
Args:
file_path (str): The path to the input image file.
Returns:
tuple: A tuple containing the RGBA image and the new file path as a string.
"""
new_file_path = None
rgba_img = None
img = None
if file_path is None:
raise UserWarning("No image provided.")
return None, None
try:
file_path, is_dict = get_image_from_dict(file_path)
img = open_image(file_path)
print(f"Opened image: {file_path}\n")
# Handle ICO files
if file_path.lower().endswith(('.ico','.webp','.gif')):
rgba_img = img.convert('RGBA')
new_file_path = Path(file_path).with_suffix('.png')
rgba_img.save(new_file_path, format='PNG')
print(f"Converted ICO to PNG: {new_file_path}")
else:
rgba_img, new_file_path = convert_jpg_to_rgba(file_path)
if rgba_img is None:
rgba_img = convert_rgb_to_rgba_safe(img)
new_file_path = Path(file_path).with_suffix('.png')
rgba_img.save(new_file_path, format='PNG')
print(f"Image saved as {new_file_path}")
except ValueError as ve:
print(f"ValueError: {ve}")
except Exception as e:
print(f"Error converting image: {e}")
return rgba_img if rgba_img else img, str(new_file_path)
def delete_image(file_path: str) -> None:
"""
Deletes the specified image file.
Parameters:
file_path (str): The path to the image file to delete.
Raises:
FileNotFoundError: If the file does not exist.
Exception: If there is an error deleting the file.
"""
try:
path = Path(file_path)
path.unlink()
print(f"Deleted original image: {file_path}")
except FileNotFoundError:
print(f"File not found: {file_path}")
except Exception as e:
print(f"Error deleting image: {e}")
def resize_all_images_in_folder(target_width: int, output_folder: str = "resized", file_prefix: str = "resized_") -> tuple[int, int]:
"""
Resizes all images in the current folder to a specified width while maintaining aspect ratio.
Creates a new folder for the resized images.
Parameters:
target_width (int): The desired width for all images
output_folder (str): Name of the folder to store resized images (default: "resized")
file_prefix (str): Prefix for resized files (default: "resized_")
Returns:
tuple[int, int]: (number of successfully resized images, number of failed attempts)
Example Usage:
successful_count, failed_count = resize_all_images_in_folder(target_width=800, output_folder="th", file_prefix="th_")
"""
# Supported image extensions
valid_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')
# Create output folder if it doesn't exist
output_path = Path(output_folder)
output_path.mkdir(exist_ok=True)
successful = 0
failed = 0
# Get current directory
current_dir = Path.cwd()
# Iterate through all files in current directory
for file_path in current_dir.iterdir():
if file_path.is_file() and file_path.suffix.lower() in valid_extensions:
try:
# Open the image
with Image.open(file_path) as img:
# Convert to RGB if needed (handles RGBA, CMYK, etc.)
if img.mode != 'RGB':
img = img.convert('RGB')
# Calculate target height maintaining aspect ratio
original_width, original_height = img.size
aspect_ratio = original_height / original_width
target_height = int(target_width * aspect_ratio)
# Resize using the reference function
resized_img = resize_image_with_aspect_ratio(img, target_width, target_height)
# Create output filename
output_filename = output_path / f"{file_prefix}{file_path.name.lower()}"
# Save the resized image
resized_img.save(output_filename, quality=95)
successful += 1
print(f"Successfully resized: {file_path.name.lower()}")
except Exception as e:
failed += 1
print(f"Failed to resize {file_path.name.lower()}: {str(e)}")
print(f"\nResizing complete. Successfully processed: {successful}, Failed: {failed}")
return successful, failed
def get_image_quality(file_path):
"""Determine quality based on image width."""
try:
with Image.open(file_path) as img:
width, _ = img.size
if width < 1025:
return 0
elif width < 1537:
return 1
elif width < 2680:
return 2
else: # width >= 2680
return 3
except Exception as e:
print(f"Error opening {file_path}: {e}")
return 0 # Default to 0 if there's an error
def update_quality():
"""Update quality for each file in PRE_RENDERED_MAPS_JSON_LEVELS."""
possible_paths = ["./", "./images/prerendered/"]
for key, value in PRE_RENDERED_MAPS_JSON_LEVELS.items():
file_path = value['file']
found = False
# Check both possible locations
for base_path in possible_paths:
full_path = os.path.join(base_path, os.path.basename(file_path))
if os.path.exists(full_path):
quality = get_image_quality(full_path)
PRE_RENDERED_MAPS_JSON_LEVELS[key]['quality'] = quality
print(f"Updated {key}: Quality set to {quality} (Width checked at {full_path})")
found = True
break
if not found:
print(f"Warning: File not found for {key} at any location. Keeping quality as {value['quality']}")
def print_json():
"""Print the updated PRE_RENDERED_MAPS_JSON_LEVELS in a formatted way."""
print("\nUpdated PRE_RENDERED_MAPS_JSON_LEVELS = {")
for key, value in PRE_RENDERED_MAPS_JSON_LEVELS.items():
print(f" '{key}': {{'file': '{value['file']}', 'thumbnail': '{value['thumbnail']}', 'quality': {value['quality']}}},")
print("}")
def calculate_optimal_fill_dimensions(image: Image.Image):
# Extract the original dimensions
original_width, original_height = image.size
# Set constants
MIN_ASPECT_RATIO = 9 / 16
MAX_ASPECT_RATIO = 16 / 9
FIXED_DIMENSION = 1024
# Calculate the aspect ratio of the original image
original_aspect_ratio = original_width / original_height
# Determine which dimension to fix
if original_aspect_ratio > 1: # Wider than tall
width = FIXED_DIMENSION
height = round(FIXED_DIMENSION / original_aspect_ratio)
else: # Taller than wide
height = FIXED_DIMENSION
width = round(FIXED_DIMENSION * original_aspect_ratio)
# Ensure dimensions are multiples of 8
width = (width // 8) * 8
height = (height // 8) * 8
# Enforce aspect ratio limits
calculated_aspect_ratio = width / height
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
width = (height * MAX_ASPECT_RATIO // 8) * 8
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
height = (width / MIN_ASPECT_RATIO // 8) * 8
# Ensure width and height remain above the minimum dimensions
width = max(width, 576) if width == FIXED_DIMENSION else width
height = max(height, 576) if height == FIXED_DIMENSION else height
return width, height |