Spaces:
Running
on
Zero
Running
on
Zero
File size: 83,906 Bytes
358e1b5 bc2ae02 7cff785 6dd859c faf797f 6dd859c faf797f 80b040e faf797f ab4cf94 cbf9ae2 ab4cf94 cbf9ae2 5add6fe 74c812c 7cff785 faf797f f97739f 13dff50 f97739f 71656cf 6dd859c 5add6fe cbf9ae2 5add6fe cbf9ae2 5add6fe cbf9ae2 faf797f 74c812c faf797f 74c812c faf797f 5add6fe cbf9ae2 ab4cf94 80b040e 74c812c f97739f 0808774 ced6a2a 74c812c cbf9ae2 5add6fe cbf9ae2 5add6fe cbf9ae2 ab4cf94 13dff50 cbf9ae2 6dd859c 74c812c 6dd859c 74c812c cbf9ae2 6dd859c 74c812c 6dd859c 13dff50 7cff785 cbf9ae2 faf797f 74c812c cbf9ae2 faf797f cbf9ae2 ab4cf94 cbf9ae2 5add6fe 74c812c 6dd859c 74c812c 8e7b045 74c812c 8e7b045 ab4cf94 8e7b045 74c812c 8e7b045 74c812c 8e7b045 74c812c 8e7b045 6dd859c 8e7b045 74c812c 8e7b045 74c812c 8e7b045 74c812c 8e7b045 74c812c 8e7b045 74c812c 8e7b045 74c812c eb4b77d 8e7b045 74c812c 8e7b045 74c812c 8e7b045 74c812c 8e7b045 6dd859c 74c812c 6dd859c eb4b77d 6dd859c 8e7b045 74c812c 8e7b045 6dd859c 74c812c 6dd859c 358e1b5 6dd859c 2840c72 74c812c faf797f 6dd859c cbf9ae2 da0a17c cbf9ae2 ab4cf94 cbf9ae2 da0a17c 74c812c cbf9ae2 74c812c ab4cf94 74c812c cbf9ae2 ab4cf94 cbf9ae2 74c812c ab4cf94 5add6fe 7a9500a ab4cf94 cbf9ae2 da0a17c cbf9ae2 da0a17c cbf9ae2 13dff50 cbf9ae2 da0a17c 5add6fe cbf9ae2 5add6fe cbf9ae2 5add6fe 74c812c cbf9ae2 eb4b77d cbf9ae2 5add6fe cbf9ae2 5add6fe 375c110 cbf9ae2 6dd859c e34b08b faf797f f97739f faf797f 84268f6 faf797f 84268f6 faf797f 84268f6 faf797f e34b08b faf797f f97739f faf797f f97739f faf797f 84268f6 7cff785 faf797f 84268f6 faf797f f97739f faf797f 71656cf faf797f 7cff785 375c110 7cff785 f97739f 7cff785 375c110 faf797f 375c110 7cff785 faf797f 375c110 bc2ae02 375c110 bc2ae02 375c110 bc2ae02 7cff785 bc2ae02 faf797f 375c110 faf797f 7cff785 faf797f 375c110 faf797f 7cff785 faf797f 84268f6 faf797f 84268f6 faf797f f97739f 84268f6 faf797f 84268f6 faf797f 375c110 faf797f 375c110 faf797f 13dff50 faf797f 84268f6 faf797f 84268f6 faf797f 375c110 faf797f 375c110 faf797f f97739f ced6a2a 6dd859c 80b040e 358e1b5 f97739f 80b040e 5add6fe 04daaa1 5add6fe 80b040e 74c812c 80b040e 35bcea0 80b040e 35bcea0 80b040e ab4cf94 80b040e faf797f 80b040e e34b08b 74c812c 80b040e e34b08b 74c812c e34b08b 74c812c e34b08b 74c812c e34b08b 74c812c 80b040e 74c812c 80b040e 527fcc4 e34b08b 80b040e eb4b77d 80b040e eb4b77d 80b040e 74c812c 80b040e 74c812c 80b040e ab4cf94 71656cf ced6a2a 71656cf 80b040e f97739f 7a9500a 80b040e ced6a2a 7a9500a ced6a2a 80b040e cbf9ae2 80b040e da0a17c 80b040e ab4cf94 ced6a2a 80b040e da0a17c 80b040e 358e1b5 74c812c 80b040e 7cff785 80b040e ced6a2a 80b040e da0a17c 80b040e cbf9ae2 1c1d0c5 cbf9ae2 1c1d0c5 cbf9ae2 80b040e 74c812c cbf9ae2 80b040e 74c812c 80b040e 1c1d0c5 80b040e 1c1d0c5 80b040e 1c1d0c5 80b040e 5bddd9f cbf9ae2 faf797f cbf9ae2 375c110 faf797f 7cff785 527fcc4 faf797f 375c110 faf797f 375c110 faf797f 7cff785 80b040e 8ee01d1 80b040e faf797f 80b040e 74c812c da0a17c e34b08b 80b040e e34b08b 80b040e 74c812c 80b040e ab4cf94 80b040e 74c812c da0a17c e34b08b 80b040e ab4cf94 80b040e e34b08b 80b040e faf797f 7cff785 faf797f 7cff785 375c110 faf797f 375c110 faf797f 375c110 faf797f 375c110 faf797f 375c110 faf797f 6dd859c 358e1b5 ced6a2a 358e1b5 71656cf 358e1b5 71656cf faf797f 74c812c 7cff785 faf797f 74c812c faf797f 74c812c faf797f ced6a2a faf797f 358e1b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 |
import gradio as gr
import spaces
import os
import numpy as np
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import imageio
import shutil
from PIL import Image, ImageFilter
from easydict import EasyDict as edict
import utils.constants as constants
from haishoku.haishoku import Haishoku
from tempfile import NamedTemporaryFile
import atexit
import random
import accelerate
from transformers import AutoTokenizer, DPTImageProcessor, DPTForDepthEstimation
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from pathlib import Path
import logging
#logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
import gc
IS_SHARED_SPACE = constants.IS_SHARED_SPACE
# Import functions from modules
from utils.file_utils import cleanup_temp_files
from utils.color_utils import (
hex_to_rgb,
detect_color_format,
update_color_opacity,
)
from utils.misc import (
get_filename,
pause,
convert_ratio_to_dimensions,
update_dimensions_on_ratio,
get_seed,
get_output_name
) #install_cuda_toolkit,install_torch, _get_output, setup_runtime_env)
from utils.image_utils import (
change_color,
open_image,
upscale_image,
lerp_imagemath,
shrink_and_paste_on_blank,
show_lut,
apply_lut_to_image_path,
multiply_and_blend_images,
alpha_composite_with_control,
crop_and_resize_image,
resize_and_crop_image,
convert_to_rgba_png,
resize_image_with_aspect_ratio,
build_prerendered_images_by_quality,
get_image_from_dict,
calculate_optimal_fill_dimensions
)
from utils.hex_grid import (
generate_hexagon_grid,
generate_hexagon_grid_interface,
)
from utils.excluded_colors import (
add_color,
delete_color,
build_dataframe,
on_input,
excluded_color_list,
on_color_display_select
)
# from utils.ai_generator import (
# generate_ai_image,
# )
from utils.lora_details import (
upd_prompt_notes,
upd_prompt_notes_by_index,
split_prompt_precisely,
approximate_token_count,
get_trigger_words,
is_lora_loaded,
get_lora_models
)
from diffusers import (
FluxPipeline,
FluxImg2ImgPipeline,
FluxControlPipeline,
FluxControlPipeline,
DiffusionPipeline,
AutoencoderTiny,
AutoencoderKL
)
PIPELINE_CLASSES = {
"FluxPipeline": FluxPipeline,
"FluxImg2ImgPipeline": FluxImg2ImgPipeline,
"FluxControlPipeline": FluxControlPipeline,
"FluxFillPipeline": FluxControlPipeline
}
from utils.version_info import (
versions_html,
#initialize_cuda,
#release_torch_resources,
#get_torch_info
)
#from utils.depth_estimation import (get_depth_map_from_state)
input_image_palette = []
current_prerendered_image = gr.State("./images/images/Beeuty-1.png")
user_dir = constants.TMPDIR
lora_models = get_lora_models()
selected_index = gr.State(value=-1)
# Register the cleanup function
atexit.register(cleanup_temp_files)
def start_session(req: gr.Request):
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash))
shutil.rmtree(user_dir)
def hex_create(hex_size, border_size, input_image_path, start_x, start_y, end_x, end_y, rotation, background_color_hex, background_opacity, border_color_hex, border_opacity, fill_hex, excluded_colors_var, filter_color, x_spacing, y_spacing, add_hex_text_option=None, custom_text_list=None, custom_text_color_list=None):
global input_image_palette
try:
# Load and process the input image
input_image = Image.open(input_image_path).convert("RGBA")
except Exception as e:
print(f"Failed to convert image to RGBA: {e}")
# Open the original image without conversion
input_image = Image.open(input_image_path)
# Ensure the canvas is at least 1344x768 pixels
min_width, min_height = 1344, 768
canvas_width = max(min_width, input_image.width)
canvas_height = max(min_height, input_image.height)
# Create a transparent canvas with the required dimensions
new_canvas = Image.new("RGBA", (canvas_width, canvas_height), (0, 0, 0, 0))
# Calculate position to center the input image on the canvas
paste_x = (canvas_width - input_image.width) // 2
paste_y = (canvas_height - input_image.height) // 2
# Paste the input image onto the canvas
new_canvas.paste(input_image, (paste_x, paste_y))
# Save the 'RGBA' image to a temporary file and update 'input_image_path'
with NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
new_canvas.save(tmp_file.name, format="PNG")
input_image_path = tmp_file.name
constants.temp_files.append(tmp_file.name)
# Update 'input_image' with the new image as a file path
input_image = Image.open(input_image_path)
# Use Haishoku to get the palette from the new image
input_palette = Haishoku.loadHaishoku(input_image_path)
input_image_palette = input_palette.palette
# Update colors with opacity
background_color = update_color_opacity(
hex_to_rgb(background_color_hex),
int(background_opacity * (255 / 100))
)
border_color = update_color_opacity(
hex_to_rgb(border_color_hex),
int(border_opacity * (255 / 100))
)
# Prepare excluded colors list
excluded_color_list = [tuple(lst) for lst in excluded_colors_var]
# Generate the hexagon grid images
grid_image = generate_hexagon_grid_interface(
hex_size,
border_size,
input_image,
start_x,
start_y,
end_x,
end_y,
rotation,
background_color,
border_color,
fill_hex,
excluded_color_list,
filter_color,
x_spacing,
y_spacing,
add_hex_text_option,
custom_text_list,
custom_text_color_list
)
return grid_image
def get_model_and_lora(model_textbox):
"""
Determines the model and LoRA weights based on the model_textbox input.
wieghts must be in an array ["Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"]
"""
# If the input is in the list of models, return it with None as LoRA weights
if model_textbox in constants.MODELS:
return model_textbox, []
# If the input is in the list of LoRA weights, get the corresponding model
elif model_textbox in constants.LORA_WEIGHTS:
model = constants.LORA_TO_MODEL.get(model_textbox)
return model, model_textbox.split()
else:
# Default to a known model if input is unrecognized
default_model = model_textbox
return default_model, []
@torch.inference_mode()
def set_pipeline(
model_name="black-forest-labs/FLUX.1-dev",
lora_weights=None,
pipeline_name="FluxPipeline",
progress=gr.Progress(track_tqdm=True)
):
global pipe
if pipe.name_or_path != model_name:
del pipe
#from torch import cuda, bfloat16, float32, Generator, no_grad, backends
# Retrieve the pipeline class from the mapping
pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
if not pipeline_class:
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
f"Available options: {list(PIPELINE_CLASSES.keys())}")
#initialize_cuda()
device = "cuda" if torch.cuda.is_available() else "cpu"
#from src.condition import Condition
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
#print(f"\n {get_torch_info()}\n")
# Initialize the pipeline inside the context manager
pipe = pipeline_class.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float16
).to(device)
# Optionally, don't use CPU offload if not necessary
# alternative version that may be more efficient
# pipe.enable_sequential_cpu_offload()
if pipeline_name == "FluxPipeline":
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
#pipe.vae.enable_tiling()
else:
pipe.enable_model_cpu_offload()
# Access the tokenizer from the pipeline
tokenizer = pipe.tokenizer
# Check if add_prefix_space is set and convert to slow tokenizer if necessary
if getattr(tokenizer, 'add_prefix_space', False):
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, device_map = 'cpu')
# Update the pipeline's tokenizer
pipe.tokenizer = tokenizer
pipe.to(device)
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
if flash_attention_enabled == False:
#Enable xFormers memory-efficient attention (optional)
#pipe.enable_xformers_memory_efficient_attention()
print("\nEnabled xFormers memory-efficient attention.\n")
else:
pipe.attn_implementation="flash_attention_2"
print("\nEnabled flash_attention_2.\n")
if not is_lora_loaded(pipe, lora_weights):
# Load LoRA weights
# note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
if lora_weights:
for lora_weight in lora_weights:
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
lora_weight_set = False
if lora_configs:
for config in lora_configs:
# Load LoRA weights with optional weight_name and adapter_name
if 'weight_name' in config:
weight_name = config.get("weight_name")
adapter_name = config.get("adapter_name")
lora_collection = config.get("lora_collection")
if weight_name and adapter_name and lora_collection and lora_weight_set == False:
pipe.load_lora_weights(
lora_collection,
weight_name=weight_name,
adapter_name=adapter_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
pipe.load_lora_weights(
lora_collection,
weight_name=weight_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
elif weight_name and adapter_name and lora_weight_set == False:
pipe.load_lora_weights(
lora_weight,
weight_name=weight_name,
adapter_name=adapter_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
elif weight_name and adapter_name==None and lora_weight_set == False:
pipe.load_lora_weights(
lora_weight,
weight_name=weight_name,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
elif lora_weight_set == False:
pipe.load_lora_weights(
lora_weight,
token=constants.HF_API_TOKEN
)
lora_weight_set = True
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
# Apply 'pipe' configurations if present
if 'pipe' in config:
pipe_config = config['pipe']
for method_name, params in pipe_config.items():
method = getattr(pipe, method_name, None)
if method:
print(f"Applying pipe method: {method_name} with params: {params}")
method(**params)
else:
print(f"Method {method_name} not found in pipe.")
if 'condition_type' in config:
condition_type = config['condition_type']
if condition_type == "coloring":
#pipe.enable_coloring()
print("\nEnabled coloring.\n")
elif condition_type == "deblurring":
#pipe.enable_deblurring()
print("\nEnabled deblurring.\n")
elif condition_type == "fill":
#pipe.enable_fill()
print("\nEnabled fill.\n")
elif condition_type == "depth":
#pipe.enable_depth()
print("\nEnabled depth.\n")
elif condition_type == "canny":
#pipe.enable_canny()
print("\nEnabled canny.\n")
elif condition_type == "subject":
#pipe.enable_subject()
print("\nEnabled subject.\n")
else:
print(f"Condition type {condition_type} not implemented.")
else:
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
@spaces.GPU(duration=200, progress=gr.Progress(track_tqdm=True))
def generate_image_lowmem(
text,
neg_prompt=None,
model_name="black-forest-labs/FLUX.1-dev",
lora_weights=None,
conditioned_image=None,
mask_image=None,
image_width=1368,
image_height=848,
guidance_scale=3.5,
num_inference_steps=30,
seed=0,
true_cfg_scale=1.0,
pipeline_name="FluxPipeline",
strength=0.75,
additional_parameters=None,
progress=gr.Progress(track_tqdm=True)
):
# #from torch import cuda, bfloat16, float32, Generator, no_grad, backends
# # Retrieve the pipeline class from the mapping
# pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
# if not pipeline_class:
# raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
# f"Available options: {list(PIPELINE_CLASSES.keys())}")
# #initialize_cuda()
# device = "cuda" if torch.cuda.is_available() else "cpu"
# #from src.condition import Condition
# print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
# #print(f"\n {get_torch_info()}\n")
# # Disable gradient calculations
# with torch.no_grad():
# # Initialize the pipeline inside the context manager
# pipe = pipeline_class.from_pretrained(
# model_name,
# torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
# ).to(device)
# # Optionally, don't use CPU offload if not necessary
# # alternative version that may be more efficient
# # pipe.enable_sequential_cpu_offload()
# if pipeline_name == "FluxPipeline":
# pipe.enable_model_cpu_offload()
# pipe.vae.enable_slicing()
# #pipe.vae.enable_tiling()
# else:
# pipe.enable_model_cpu_offload()
# # Access the tokenizer from the pipeline
# tokenizer = pipe.tokenizer
# # Check if add_prefix_space is set and convert to slow tokenizer if necessary
# if getattr(tokenizer, 'add_prefix_space', False):
# tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, device_map = 'cpu')
# # Update the pipeline's tokenizer
# pipe.tokenizer = tokenizer
# pipe.to(device)
# flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
# if flash_attention_enabled == False:
# #Enable xFormers memory-efficient attention (optional)
# #pipe.enable_xformers_memory_efficient_attention()
# print("\nEnabled xFormers memory-efficient attention.\n")
# else:
# pipe.attn_implementation="flash_attention_2"
# print("\nEnabled flash_attention_2.\n")
# # Load LoRA weights
# # note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
# if lora_weights:
# for lora_weight in lora_weights:
# lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
# lora_weight_set = False
# if lora_configs:
# for config in lora_configs:
# # Load LoRA weights with optional weight_name and adapter_name
# if 'weight_name' in config:
# weight_name = config.get("weight_name")
# adapter_name = config.get("adapter_name")
# lora_collection = config.get("lora_collection")
# if weight_name and adapter_name and lora_collection and lora_weight_set == False:
# pipe.load_lora_weights(
# lora_collection,
# weight_name=weight_name,
# adapter_name=adapter_name,
# token=constants.HF_API_TOKEN
# )
# lora_weight_set = True
# print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
# elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
# pipe.load_lora_weights(
# lora_collection,
# weight_name=weight_name,
# token=constants.HF_API_TOKEN
# )
# lora_weight_set = True
# print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
# elif weight_name and adapter_name and lora_weight_set == False:
# pipe.load_lora_weights(
# lora_weight,
# weight_name=weight_name,
# adapter_name=adapter_name,
# token=constants.HF_API_TOKEN
# )
# lora_weight_set = True
# print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
# elif weight_name and adapter_name==None and lora_weight_set == False:
# pipe.load_lora_weights(
# lora_weight,
# weight_name=weight_name,
# token=constants.HF_API_TOKEN
# )
# lora_weight_set = True
# print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
# elif lora_weight_set == False:
# pipe.load_lora_weights(
# lora_weight,
# token=constants.HF_API_TOKEN
# )
# lora_weight_set = True
# print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
# # Apply 'pipe' configurations if present
# if 'pipe' in config:
# pipe_config = config['pipe']
# for method_name, params in pipe_config.items():
# method = getattr(pipe, method_name, None)
# if method:
# print(f"Applying pipe method: {method_name} with params: {params}")
# method(**params)
# else:
# print(f"Method {method_name} not found in pipe.")
# if 'condition_type' in config:
# condition_type = config['condition_type']
# if condition_type == "coloring":
# #pipe.enable_coloring()
# print("\nEnabled coloring.\n")
# elif condition_type == "deblurring":
# #pipe.enable_deblurring()
# print("\nEnabled deblurring.\n")
# elif condition_type == "fill":
# #pipe.enable_fill()
# print("\nEnabled fill.\n")
# elif condition_type == "depth":
# #pipe.enable_depth()
# print("\nEnabled depth.\n")
# elif condition_type == "canny":
# #pipe.enable_canny()
# print("\nEnabled canny.\n")
# elif condition_type == "subject":
# #pipe.enable_subject()
# print("\nEnabled subject.\n")
# else:
# print(f"Condition type {condition_type} not implemented.")
# else:
# pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
with torch.no_grad():
global pipe
mask_parameters = {}
# Load the mask image if provided
if (pipeline_name == "FluxFillPipeline"):
mask_image = open_image(mask_image).convert("RGBA")
mask_condition_type = constants.condition_type[5]
guidance_scale = 30
num_inference_steps=50
max_sequence_length=512
print(f"\nAdded mask image.\n {mask_image.size}")
mask_parameters ={
"mask_image": mask_image,
}
# Set the random seed for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
#conditions = []
if conditioned_image is not None:
conditioned_image = resize_and_crop_image(conditioned_image, image_width, image_height)
#condition = Condition(constants.condition_type[2], conditioned_image)
#conditions.append(condition)
print(f"\nAdded conditioned image.\n {conditioned_image.size}")
# Prepare the parameters for image generation
additional_parameters ={
"strength": strength,
"image": conditioned_image,
}
additional_parameters.update(mask_parameters)
else:
print("\nNo conditioned image provided.")
if neg_prompt!=None:
true_cfg_scale=1.1
additional_parameters ={
"negative_prompt": neg_prompt,
"true_cfg_scale": true_cfg_scale,
}
# handle long prompts by splitting them
if approximate_token_count(text) > 76:
prompt, prompt2 = split_prompt_precisely(text)
prompt_parameters = {
"prompt" : prompt,
"prompt_2": prompt2,
}
else:
prompt_parameters = {
"prompt" :text,
}
additional_parameters.update(prompt_parameters)
# Combine all parameters
generate_params = {
"height": image_height,
"width": image_width,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
}
if additional_parameters:
generate_params.update(additional_parameters)
generate_params = {k: v for k, v in generate_params.items() if v is not None}
print(f"generate_params: {generate_params}")
# Generate the image
result = pipe(**generate_params) #generate_image(pipe,generate_params)
image = result.images[0]
# Clean up
del result
#del conditions
del generator
# Delete the pipeline and clear cache
#del pipe
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
print(torch.cuda.memory_summary(device=None, abbreviated=False))
return image
def generate_ai_image_local (
map_option,
prompt_textbox_value,
neg_prompt_textbox_value,
model="black-forest-labs/FLUX.1-dev",
lora_weights=None,
conditioned_image=None,
mask_image=None,
height=512,
width=912,
num_inference_steps=30,
guidance_scale=3.5,
seed=777,
pipeline_name="FluxPipeline",
strength=0.75,
progress=gr.Progress(track_tqdm=True)
):
print(f"Generating image with lowmem")
try:
if map_option != "Prompt":
prompt = constants.PROMPTS[map_option]
negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "")
else:
prompt = prompt_textbox_value
negative_prompt = neg_prompt_textbox_value or ""
#full_prompt = f"{prompt} {negative_prompt}"
additional_parameters = {}
if lora_weights:
for lora_weight in lora_weights:
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
for config in lora_configs:
if 'parameters' in config:
additional_parameters.update(config['parameters'])
elif 'trigger_words' in config:
trigger_words = get_trigger_words(lora_weight)
prompt = f"{trigger_words} {prompt}"
for key, value in additional_parameters.items():
if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']:
additional_parameters[key] = int(value)
elif key in ['guidance_scale','true_cfg_scale']:
additional_parameters[key] = float(value)
height = additional_parameters.pop('height', height)
width = additional_parameters.pop('width', width)
num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps)
guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale)
print("Generating image with the following parameters:\n")
print(f"Model: {model}")
print(f"LoRA Weights: {lora_weights}")
print(f"Prompt: {prompt}")
print(f"Neg Prompt: {negative_prompt}")
print(f"Height: {height}")
print(f"Width: {width}")
print(f"Number of Inference Steps: {num_inference_steps}")
print(f"Guidance Scale: {guidance_scale}")
print(f"Seed: {seed}")
print(f"Additional Parameters: {additional_parameters}")
print(f"Conditioned Image: {conditioned_image}")
print(f"Conditioned Image Strength: {strength}")
print(f"pipeline: {pipeline_name}")
set_pipeline(
model_name=model,
lora_weights=lora_weights,
pipeline_name=pipeline_name,
progress=progress
)
image = generate_image_lowmem(
text=prompt,
model_name=model,
neg_prompt=negative_prompt,
lora_weights=lora_weights,
conditioned_image=conditioned_image,
mask_image=mask_image,
image_width=width,
image_height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
seed=seed,
pipeline_name=pipeline_name,
strength=strength,
additional_parameters=additional_parameters
)
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
image.save(tmp.name, format="PNG")
constants.temp_files.append(tmp.name)
print(f"Image saved to {tmp.name}")
return tmp.name
except Exception as e:
print(f"Error generating AI image: {e}")
#gc.collect()
return None
def generate_input_image_click(image_input, map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, mask_image=None, strength=0.5, image_format="16:9", scale_factor=constants.SCALE_FACTOR, progress=gr.Progress(track_tqdm=True)):
seed = get_seed(randomize_seed, seed)
# Get the model and LoRA weights
model, lora_weights = get_model_and_lora(model_textbox_value)
global current_prerendered_image
conditioned_image=None
formatted_map_option = map_option.lower().replace(' ', '_')
if use_conditioned_image:
print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n")
# ensure the conditioned image is an image and not a string, cannot use RGBA
if isinstance(current_prerendered_image.value, str):
conditioned_image = open_image(current_prerendered_image.value).convert("RGB")
print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n")
# use image_input as the conditioned_image if it is not None
elif image_input is not None:
file_path, is_dict = get_image_from_dict(image_input)
conditioned_image = open_image(file_path).convert("RGB")
print(f"Conditioned Image set to modify Input Image!\nClear to generate new image from layered image: {is_dict}\n")
gr.Info(f"Conditioned Image set to modify Input Image! Clear to generate new image. Layered: {is_dict}",duration=5)
# Convert image_format from a string split by ":" into two numbers divided
width_ratio, height_ratio = map(int, image_format.split(":"))
aspect_ratio = width_ratio / height_ratio
width, height = convert_ratio_to_dimensions(aspect_ratio, constants.BASE_HEIGHT)
pipeline = "FluxPipeline"
if conditioned_image is not None:
pipeline = "FluxImg2ImgPipeline"
if (model == "black-forest-labs/FLUX.1-Fill-dev"):
pipeline = "FluxFillPipeline"
width, height = calculate_optimal_fill_dimensions(conditioned_image)
print(f"Optimal Dimensions: {width} x {height} \n")
# Generate the AI image and get the image path
image_path = generate_ai_image_local(
map_option,
prompt_textbox_value,
negative_prompt_textbox_value,
model,
lora_weights,
conditioned_image,
mask_image,
strength=strength,
height=height,
width=width,
seed=seed,
pipeline_name=pipeline,
)
# Open the generated image
try:
image = Image.open(image_path).convert("RGBA")
except Exception as e:
print(f"Failed to open generated image: {e}")
return image_path, seed # Return the original image path if opening fails
# Upscale the image
upscaled_image = upscale_image(image, scale_factor)
# Save the upscaled image to a temporary file
with NamedTemporaryFile(delete=False, suffix=".png", prefix=f"{formatted_map_option}_") as tmp_upscaled:
upscaled_image.save(tmp_upscaled.name, format="PNG")
constants.temp_files.append(tmp_upscaled.name)
print(f"Upscaled image saved to {tmp_upscaled.name}")
gc.collect()
# Return the path of the upscaled image
return tmp_upscaled.name, seed
def update_prompt_visibility(map_option):
is_visible = (map_option == "Prompt")
return (
gr.update(visible=is_visible),
gr.update(visible=is_visible),
gr.update(visible=is_visible)
)
def update_prompt_notes(model_textbox_value):
return upd_prompt_notes(model_textbox_value)
def update_selection(evt: gr.SelectData, aspect_ratio):
selected_lora = constants.LORAS[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
new_aspect_ratio = aspect_ratio # default to the currently selected aspect ratio
lora_repo = selected_lora["repo"]
#updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
# If the selected LoRA model specifies an aspect ratio, use it to update dimensions.
if "aspect" in selected_lora:
try:
new_aspect_ratio = selected_lora["aspect"]
# Recalculate dimensions using constants.BASE_HEIGHT as the height reference.
new_width, new_height = update_dimensions_on_ratio(new_aspect_ratio, constants.BASE_HEIGHT)
# (Optionally, you could log or use new_width/new_height as needed)
except Exception as e:
print(f"\nError in update selection aspect ratios: {e}\nSkipping")
return [gr.update(value=lora_repo), gr.update(value=lora_repo), evt.index, new_aspect_ratio, upd_prompt_notes_by_index(evt.index)]
def on_prerendered_gallery_selection(event_data: gr.SelectData):
global current_prerendered_image
selected_index = event_data.index
selected_image = constants.pre_rendered_maps_paths[selected_index]
print(f"Template Image Selected: {selected_image} ({event_data.index})\n")
gr.Info(f"Template Image Selected: {selected_image} ({event_data.index})",duration=5)
current_prerendered_image.value = selected_image
return current_prerendered_image
def combine_images_with_lerp(input_image, output_image, alpha):
in_image = open_image(input_image)
out_image = open_image(output_image)
print(f"Combining images with alpha: {alpha}")
return lerp_imagemath(in_image, out_image, alpha)
def add_border(image, mask_width, mask_height, blank_color):
bordered_image_output = Image.open(image).convert("RGBA")
margin_color = detect_color_format(blank_color)
print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}")
return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color)
def on_input_image_change(image_path):
if image_path is None:
gr.Warning("Please upload an Input Image to get started.")
return None, gr.update()
img, img_path = convert_to_rgba_png(image_path)
with Image.open(img_path) as pil_img:
width, height = pil_img.size
return [img_path, gr.update(width=width, height=height)]
def update_sketch_dimensions(input_image, sketch_image):
# Load the images using open_image() if they are provided as file paths.
in_img = open_image(input_image) if isinstance(input_image, str) else input_image
sk_img_path, _ = get_image_from_dict(sketch_image)
sk_img = open_image(sk_img_path)
# Resize sketch image if dimensions don't match input image.
if in_img.size != sk_img.size:
sk_img = sk_img.resize(in_img.size, Image.LANCZOS)
return [sk_img, gr.update(width=in_img.width, height=in_img.height)]
def composite_with_control_sync(input_image, sketch_image, slider_value):
# Load the images using open_image() if they are provided as file paths.
in_img = open_image(input_image) if isinstance(input_image, str) else input_image
sk_img_path, _ = get_image_from_dict(sketch_image)
sk_img = open_image(sk_img_path)
# Resize sketch image if dimensions don't match input image.
if in_img.size != sk_img.size:
sk_img = sk_img.resize(in_img.size, Image.LANCZOS)
# Now composite using the original alpha_composite_with_control function.
result_img = alpha_composite_with_control(in_img, sk_img, slider_value)
return result_img
def replace_input_with_sketch_image(sketch_image):
print(f"Sketch Image: {sketch_image}\n")
sketch, is_dict = get_image_from_dict(sketch_image)
return sketch
####################################### DEPTH ESTIMATION #######################################
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
Image.Image: The preprocessed image.
"""
processed_image = TRELLIS_PIPELINE.preprocess_image(image)
return processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult, name: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'name': name
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
name = state['name']
return gs, mesh, name
@spaces.GPU()
def depth_process_image(image_path, resized_width=800, z_scale=208):
"""
Processes the input image to generate a depth map.
Args:
image_path (str): The file path to the input image.
resized_width (int, optional): The width to which the image is resized. Defaults to 800.
z_scale (int, optional): Z-axis scale factor. Defaults to 208.
Returns:
list: A list containing the depth image.
"""
image_path = Path(image_path)
if not image_path.exists():
raise ValueError("Image file not found")
# Load and resize the image
image_raw = Image.open(image_path).convert("RGB")
print(f"Original size: {image_raw.size}")
resized_height = int(resized_width * image_raw.size[1] / image_raw.size[0])
image = image_raw.resize((resized_width, resized_height), Image.Resampling.LANCZOS)
print(f"Resized size: {image.size}")
# Prepare image for the model
encoding = image_processor(image, return_tensors="pt")
# Perform depth estimation
with torch.no_grad():
outputs = depth_model(**encoding)
predicted_depth = outputs.predicted_depth
# Interpolate depth to match the image size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=(image.height, image.width),
mode="bicubic",
align_corners=False,
).squeeze()
# Normalize the depth image to 8-bit
if torch.cuda.is_available():
prediction = prediction.numpy()
else:
prediction = prediction.cpu().numpy()
depth_min, depth_max = prediction.min(), prediction.max()
depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8")
img = Image.fromarray(depth_image)
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return img
def generate_3d_asset_part1(depth_image_source, randomize_seed, seed, input_image, output_image, overlay_image, bordered_image_output, progress=gr.Progress(track_tqdm=True)):
# Choose the image based on source
if depth_image_source == "Input Image":
image_path = input_image
elif depth_image_source == "Output Image":
image_path = output_image
elif depth_image_source == "Image with Margins":
image_path = bordered_image_output
else: # "Overlay Image"
image_path = overlay_image
output_name = get_output_name(input_image, output_image, overlay_image, bordered_image_output)
# Ensure the file exists
if not Path(image_path).exists():
raise ValueError("Image file not found.")
# Determine the final seed using default MAX_SEED from constants
final_seed = np.random.randint(0, constants.MAX_SEED) if randomize_seed else seed
# Process the image for depth estimation
depth_img = depth_process_image(image_path, resized_width=1536, z_scale=336)
depth_img = resize_image_with_aspect_ratio(depth_img, 1536, 1536)
return depth_img, image_path, output_name, final_seed
@spaces.GPU(duration=150,progress=gr.Progress(track_tqdm=True))
def generate_3d_asset_part2(depth_img, image_path, output_name, seed, steps, model_resolution, video_resolution, req: gr.Request, progress=gr.Progress(track_tqdm=True)):
# Open image using standardized defaults
image_raw = Image.open(image_path).convert("RGB")
resized_image = resize_image_with_aspect_ratio(image_raw, model_resolution, model_resolution)
depth_img = Image.open(depth_img).convert("RGBA")
# Preprocess and run the Trellis pipeline with fixed sampler settings
try:
processed_image = TRELLIS_PIPELINE.preprocess_image(resized_image, max_resolution=model_resolution)
outputs = TRELLIS_PIPELINE.run(
processed_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": steps,
"cfg_strength": 7.5,
},
slat_sampler_params={
"steps": steps,
"cfg_strength": 3.0,
},
)
# Validate the mesh
mesh = outputs['mesh'][0]
meshisdict = isinstance(mesh, dict)
if meshisdict:
vertices = mesh['vertices']
faces = mesh['faces']
else:
vertices = mesh.vertices
faces = mesh.faces
print(f"Mesh vertices: {vertices.shape}, faces: {faces.shape}")
if faces.max() >= vertices.shape[0]:
raise ValueError(f"Invalid mesh: face index {faces.max()} exceeds vertex count {vertices.shape[0]}")
except Exception as e:
gr.Warning(f"Error generating 3D asset: {e}")
print(f"Error generating 3D asset: {e}")
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return None,None, depth_img
# Ensure data is on GPU and has correct type
if not vertices.is_cuda or not faces.is_cuda:
raise ValueError("Mesh data must be on GPU")
if vertices.dtype != torch.float32 or faces.dtype != torch.int32:
if meshisdict:
mesh['faces'] = faces.to(torch.int32)
mesh['vertices'] = vertices.to(torch.float32)
else:
mesh.faces = faces.to(torch.int32)
mesh.vertices = vertices.to(torch.float32)
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
video = render_utils.render_video(outputs['gaussian'][0], resolution=video_resolution, num_frames=64, r=1, fov=45)['color']
try:
video_geo = render_utils.render_video(outputs['mesh'][0], resolution=video_resolution, num_frames=64, r=1, fov=45)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
except Exception as e:
gr.Info(f"Error rendering video: {e}")
print(f"Error rendering video: {e}")
video_path = os.path.join(user_dir, f'{output_name}.mp4')
imageio.mimsave(video_path, video, fps=8)
#snapshot_results = render_utils.render_snapshot_depth(outputs['mesh'][0], resolution=1280, r=1, fov=80)
#depth_snapshot = Image.fromarray(snapshot_results['normal'][0]).convert("L")
depth_snapshot = depth_img
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], output_name)
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return [state, video_path, depth_snapshot]
@spaces.GPU(duration=90,progress=gr.Progress(track_tqdm=True))
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,progress=gr.Progress(track_tqdm=True)
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash))
gs, mesh, name = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, f'{name}.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return glb_path, glb_path
@spaces.GPU(progress=gr.Progress(track_tqdm=True))
def extract_gaussian(state: dict, req: gr.Request, progress=gr.Progress(track_tqdm=True)) -> Tuple[str, str]:
"""
Extract a Gaussian file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash))
gs, _, name = unpack_state(state)
gaussian_path = os.path.join(user_dir, f'{name}.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return gaussian_path, gaussian_path
@spaces.GPU()
def getVersions():
return versions_html()
#generate_input_image_click.zerogpu = True
#generate_depth_button_click.zerogpu = True
#def main(debug=False):
title = "HexaGrid Creator"
#description = "Customizable Hexagon Grid Image Generator"
examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]]
gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/","assets/"])
# Gradio Blocks Interface
with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',delete_cache=(21600,86400)) as hexaGrid:
with gr.Row():
gr.Markdown("""
# HexaGrid Creator
## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢""", elem_classes="intro")
with gr.Row():
with gr.Accordion("Welcome to HexaGrid Creator, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you.", open=False, elem_classes="intro"):
gr.Markdown ("""
## Drop an image into the Input Image and get started!
## What is HexaGrid Creator?
HexaGrid Creator is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles!
### What Can You Do?
- **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters.
- **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them.
- **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look.
- **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time.
- **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization.
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
- **Add Margins:** Add customizable margins around your images for a polished finish.
### Why You'll Love It
- **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun!
- **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways.
- **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢
- **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization.
### Get Started
1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool.
2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay.
3. **Download and Share:** Once you're happy with your creation, download it and share it with the world!
### Advanced Features
- **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images.
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
- **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization.
- **Add Margins:** Customize margins around your images for a polished finish.
Join the hive and start creating with HexaGrid Creator today!
""", elem_classes="intro")
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(
label="Input Image",
type="filepath",
interactive=True,
elem_classes="centered solid imgcontainer",
key="imgInput",
image_mode=None,
format="PNG",
height=450,
width=800
)
with gr.Accordion("Sketch Pad", open = False, elem_id="sketchpd"):
with gr.Row():
sketch_image = gr.Sketchpad(
label="Sketch Image",
type="filepath",
#invert_colors=True,
#sources=['upload','canvas'],
#tool=['editor','select','color-sketch'],
placeholder="Draw a sketch or upload an image.",
interactive=True,
elem_classes="centered solid imgcontainer",
key="imgSketch",
image_mode="RGBA",
format="PNG",
brush=gr.Brush(),
canvas_size=(640,360)
)
with gr.Row():
with gr.Column(scale=1):
sketch_replace_input_image_button = gr.Button("Replace Input Image with sketch", elem_id="sketch_replace_input_image_button", elem_classes="solid")
sketch_alpha_composite_slider = gr.Slider(0,100,50,0.5, label="Sketch Transparancy", elem_id="alpha_composite_slider")
btn_sketch_alpha_composite = gr.Button("Overlay Sketch on Input Image", elem_id="btn_sketchninput", elem_classes="solid")
gr.Markdown("### Do Not add to image if using a fill model")
with gr.Column():
with gr.Accordion("Hex Coloring and Exclusion", open = False):
with gr.Row():
with gr.Column():
color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050")
with gr.Column():
filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,)
exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid")
color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered")
selected_row = gr.Number(0, label="Selected Row", visible=False)
delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid")
fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True)
with gr.Accordion("Image Filters", open = False):
with gr.Row():
with gr.Column():
composite_color = gr.ColorPicker(label="Color", value="#ede9ac44")
with gr.Column():
composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True)
with gr.Row():
composite_button = gr.Button("Composite", elem_classes="solid")
with gr.Row():
with gr.Column():
lut_filename = gr.Textbox(
value="",
label="Look Up Table (LUT) File Name",
elem_id="lutFileName")
with gr.Column():
lut_file = gr.File(
value=None,
file_count="single",
file_types=[".cube"],
type="filepath",
label="LUT cube File")
with gr.Row():
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=constants.default_lut_example_img)
with gr.Row():
with gr.Column():
gr.Markdown("""
### Included Filters (LUTs)
There are several included Filters:
Try them on the example image before applying to your Input Image.
""", elem_id="lut_markdown")
with gr.Column():
gr.Examples(elem_id="lut_examples",
examples=[[f] for f in constants.lut_files],
inputs=[lut_filename],
outputs=[lut_filename],
label="Select a Filter (LUT) file. Populate the LUT File Name field",
examples_per_page = 15,
)
with gr.Row():
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button")
lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename])
lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image])
apply_lut_button.click(
lambda lut_filename, input_image: gr.Warning("Please upload an Input Image to get started.") if input_image is None else apply_lut_to_image_path(lut_filename, input_image)[0],
inputs=[lut_filename, input_image],
outputs=[input_image],
scroll_to_output=True
)
with gr.Row():
with gr.Accordion("Generate AI Image (click here for options)", open = False):
with gr.Row():
with gr.Column():
model_options = gr.Dropdown(
label="Choose an AI Model*",
choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"],
value="Cossale/Frames2-Flex.1",
elem_classes="solid"
)
model_textbox = gr.Textbox(
label="LORA/Model",
value="Cossale/Frames2-Flex.1",
elem_classes="solid",
elem_id="inference_model",
lines=2,
visible=False
)
with gr.Accordion("Choose Style Model*", open=False):
lora_gallery = gr.Gallery(
[(open_image(image_path), title) for image_path, title in lora_models],
label="Styles",
allow_preview=False, preview=False ,
columns=2,
elem_id="lora_gallery",
show_share_button=False,
elem_classes="solid", type="filepath",
object_fit="contain", height="auto", format="png",
)
# Update map_options to a Dropdown with choices from constants.PROMPTS keys
with gr.Row():
with gr.Column():
map_options = gr.Dropdown(
label="Map Options*",
choices=list(constants.PROMPTS.keys()),
value="Alien Landscape",
elem_classes="solid",
scale=0
)
# Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1
# The values of height and width are based on common resolutions for each aspect ratio
# Default to 16x9, 912x512
image_size_ratio = gr.Dropdown(label="Image Aspect Ratio", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True)
with gr.Column():
seed_slider = gr.Slider(
label="Seed",
minimum=0,
maximum=constants.MAX_SEED,
step=1,
value=0,
scale=0, randomize=True, elem_id="rnd_seed"
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False, scale=0, interactive=True)
prompt_textbox = gr.Textbox(
label="Prompt",
visible=False,
elem_classes="solid",
value="top-down, (rectangular tabletop_map) alien planet map, Battletech_boardgame scifi world with forests, lakes, oceans, continents and snow at the top and bottom, (middle is dark, no_reflections, no_shadows), from directly above. From 100,000 feet looking straight down",
lines=4
)
negative_prompt_textbox = gr.Textbox(
label="Negative Prompt",
visible=False,
elem_classes="solid",
value="Earth, low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text"
)
prompt_notes_label = gr.Label(
"You should use FRM$ as trigger words. @1.5 minutes",
elem_classes="solid centered small",
show_label=False,
visible=False
)
# Keep the change event to maintain functionality
map_options.change(
fn=update_prompt_visibility,
inputs=[map_options],
outputs=[prompt_textbox, negative_prompt_textbox, prompt_notes_label]
)
with gr.Row():
generate_input_image = gr.Button(
"Generate from Input Image & Options ",
elem_id="generate_input_image",
elem_classes="solid"
)
with gr.Column(scale=2):
with gr.Accordion("Template Images", open = False):
with gr.Row():
with gr.Column(scale=2):
# Gallery from PRE_RENDERED_IMAGES GOES HERE
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images_by_quality(3,'thumbnail'), elem_id="gallery",
elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False)
with gr.Column():
image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt percentage)", minimum=0, maximum=1.0, value=0.85, step=0.01, interactive=True)
replace_input_image_button = gr.Button(
"Replace Input Image",
elem_id="prerendered_replace_input_image_button",
elem_classes="solid"
)
generate_input_image_from_gallery = gr.Button(
"Generate AI Image from Template Image & Options",
elem_id="generate_input_image_from_gallery",
elem_classes="solid"
)
with gr.Accordion("Advanced Hexagon Settings", open = False):
with gr.Row():
start_x = gr.Number(label="Start X", value=20, minimum=-512, maximum= 512, precision=0)
start_y = gr.Number(label="Start Y", value=20, minimum=-512, maximum= 512, precision=0)
end_x = gr.Number(label="End X", value=-20, minimum=-512, maximum= 512, precision=0)
end_y = gr.Number(label="End Y", value=-20, minimum=-512, maximum= 512, precision=0)
with gr.Row():
x_spacing = gr.Number(label="Adjust Horizontal spacing", value=-8, minimum=-200, maximum=200, precision=1)
y_spacing = gr.Number(label="Adjust Vertical spacing", value=3, minimum=-200, maximum=200, precision=1)
with gr.Row():
rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)")
add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Column Letter, Row Number", "Column Number, Row Letter", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None)
with gr.Row():
custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,)
custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False)
with gr.Row():
hex_text_info = gr.Markdown("""
### Text Color uses the Border Color and Border Opacity, unless you use a custom list.
### The Custom Text List and Custom Text Color List are repeating comma separated lists.
### The custom color list is a comma separated list of hex colors.
#### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue"
""", elem_id="hex_text_info", visible=False)
add_hex_text.change(
fn=lambda x: (
gr.update(visible=(x == "Custom List")),
gr.update(visible=(x == "Custom List")),
gr.update(visible=(x != None))
),
inputs=add_hex_text,
outputs=[custom_text_list, custom_text_color_list, hex_text_info]
)
with gr.Row():
hex_size = gr.Number(label="Hexagon Size", value=90, minimum=1, maximum=768)
border_size = gr.Slider(-5,25,value=2,step=1,label="Border Size")
with gr.Row():
background_color = gr.ColorPicker(label="Background Color", value="#000000", interactive=True)
background_opacity = gr.Slider(0,100,0,1,label="Background Opacity %")
border_color = gr.ColorPicker(label="Border Color", value="#7b7b7b", interactive=True)
border_opacity = gr.Slider(0,100,50,1,label="Border Opacity %")
with gr.Row():
hex_button = gr.Button("Generate Hex Grid!", elem_classes="solid", elem_id="btn-generate")
with gr.Row():
output_image = gr.Image(label="Hexagon Grid Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOutput",interactive=True)
overlay_image = gr.Image(label="Hexagon Overlay Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOverlay",interactive=True)
with gr.Row():
output_overlay_composite = gr.Slider(0,100,50,0.5, label="Interpolate Intensity")
output_blend_multiply_composite = gr.Slider(0,100,50,0.5, label="Overlay Intensity")
output_alpha_composite = gr.Slider(0,100,50,0.5, label="Alpha Composite Intensity")
with gr.Accordion("Add Margins (bleed)", open=False):
with gr.Row():
border_image_source = gr.Radio(label="Add Margins around which Image", choices=["Input Image", "Overlay Image"], value="Overlay Image")
with gr.Row():
mask_width = gr.Number(label="Margins Width", value=10, minimum=0, maximum=100, precision=0)
mask_height = gr.Number(label="Margins Height", value=10, minimum=0, maximum=100, precision=0)
with gr.Row():
margin_color = gr.ColorPicker(label="Margin Color", value="#333333FF", interactive=True)
margin_opacity = gr.Slider(0,100,95,0.5,label="Margin Opacity %")
with gr.Row():
add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary")
with gr.Row():
bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True)
with gr.Accordion("Height Maps and 3D", open=False):
with gr.Row():
depth_image_source = gr.Radio(
label="Depth Image Source",
choices=["Input Image", "Hexagon Grid Image", "Overlay Image", "Image with Margins"],
value="Input Image"
)
with gr.Accordion("Advanced 3D Generation Settings", open=False):
with gr.Row():
with gr.Column():
# Use standard seed settings only
seed_3d = gr.Slider(0, constants.MAX_SEED, label="Seed (3D Generation)", value=0, step=1, randomize=True)
randomize_seed_3d = gr.Checkbox(label="Randomize Seed (3D Generation)", value=True)
with gr.Column():
steps = gr.Slider(6, 36, value=12, step=1, label="Image Sampling Steps", interactive=True)
video_resolution = gr.Slider(384, 768, value=480, step=32, label="Video Resolution (*danger*)", interactive=True)
model_resolution = gr.Slider(512, 2304, value=1024, step=64, label="3D Model Resolution", interactive=True)
with gr.Row():
generate_3d_asset_button = gr.Button("Generate 3D Asset", elem_classes="solid", variant="secondary")
with gr.Row():
depth_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="DepthOutput",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True, height=400)
with gr.Row():
# For display: video output and 3D model preview (GLTF)
video_output = gr.Video(label="3D Asset Video", autoplay=True, loop=True, height=400)
with gr.Accordion("GLB Extraction Settings", open=False):
with gr.Row():
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gaussian_btn = gr.Button("Extract Gaussian", interactive=False)
with gr.Row():
with gr.Column(scale=2):
model_output = gr.Model3D(label="Extracted 3D Model", clear_color=[1.0, 1.0, 1.0, 1.0],
elem_classes="centered solid imgcontainer", interactive=True)
with gr.Column(scale=1):
glb_file = gr.File(label="3D GLTF", elem_classes="solid small centered", height=250)
gaussian_file = gr.File(label="Gaussian", elem_classes="solid small centered", height=250)
gr.Markdown("""
### Files over 10 MB may not display in the 3D model viewer
""", elem_id="file_size_info", elem_classes="intro" )
is_multiimage = gr.State(False)
output_buf = gr.State()
ddd_image_path = gr.State("./images/images/Beeuty-1.png")
ddd_file_name = gr.State("Hexagon_file")
with gr.Row():
gr.Examples(examples=[
["assets//examples//hex_map_p1.png", False, True, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 15],
["assets//examples//hex_map_p1_overlayed.png", False, False, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 75],
["assets//examples//hex_flower_logo.png", False, True, -95,-95,100,100,-24,-2,190,30,2,"#FF8951", 50],
["assets//examples//hexed_fract_1.png", False, True, 0,0,0,0,0,0,10,0,0,"#000000", 5],
["assets//examples//tmpzt3mblvk.png", False, True, -20,10,0,0,-6,-2,35,30,1,"#ffffff", 0],
],
inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity],
elem_id="examples")
# with gr.Row():
# login_button = gr.LoginButton(size="sm", elem_classes="solid centered", elem_id="hf_login_btn")
with gr.Row():
gr.HTML(value=getVersions(), visible=True, elem_id="versions")
# Handlers
hexaGrid.load(start_session)
hexaGrid.unload(end_session)
color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row])
color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)])
delete_button.click(fn=delete_color, inputs=[selected_row, color_display], outputs=[color_display])
exclude_color_button.click(fn=add_color, inputs=[color_picker, gr.State(excluded_color_list)], outputs=[color_display, gr.State(excluded_color_list)])
hex_button.click(
fn=lambda hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list:
gr.Warning("Please upload an Input Image to get started.") if input_image is None else hex_create(hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list),
inputs=[hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list],
outputs=[output_image, overlay_image],
scroll_to_output=True
)
generate_input_image.click(
fn=generate_input_image_click,
inputs=[input_image,map_options, prompt_textbox, negative_prompt_textbox, model_textbox, randomize_seed, seed_slider, gr.State(False), sketch_image, image_guidance_stength, image_size_ratio],
outputs=[input_image, seed_slider], scroll_to_output=True
).then(
fn=update_sketch_dimensions,
inputs=[input_image, sketch_image],
outputs=[sketch_image, sketch_image]
)
input_image.input(
fn=on_input_image_change,
inputs=[input_image],
outputs=[input_image,sketch_image], scroll_to_output=True,
)
###################### sketchpad ############################
btn_sketch_alpha_composite.click(
fn=composite_with_control_sync,
inputs=[input_image, sketch_image, sketch_alpha_composite_slider],
outputs=[input_image],
scroll_to_output=True
)
sketch_replace_input_image_button.click(
lambda sketch_image: replace_input_with_sketch_image(sketch_image),
inputs=[sketch_image],
outputs=[input_image], scroll_to_output=True
)
##################### model #######################################
model_textbox.change(
fn=update_prompt_notes,
inputs=model_textbox,
outputs=prompt_notes_label,preprocess=False
)
model_options.change(
fn=lambda x: (gr.update(visible=(x == "Manual Entry")), gr.update(value=x) if x != "Manual Entry" else gr.update()),
inputs=model_options,
outputs=[model_textbox, model_textbox]
)
model_options.change(
fn=update_prompt_notes,
inputs=model_options,
outputs=prompt_notes_label
)
lora_gallery.select(
fn=update_selection,
inputs=[image_size_ratio],
outputs=[prompt_textbox, model_options, gr.State(selected_index), image_size_ratio, prompt_notes_label]
)
#################### model end ########################################
composite_button.click(
fn=lambda input_image, composite_color, composite_opacity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else change_color(input_image, composite_color, composite_opacity),
inputs=[input_image, composite_color, composite_opacity],
outputs=[input_image]
)
#use conditioned_image as the input_image for generate_input_image_click
generate_input_image_from_gallery.click(
fn=generate_input_image_click,
inputs=[input_image, map_options, prompt_textbox, negative_prompt_textbox, model_textbox,randomize_seed, seed_slider, gr.State(True), sketch_image , image_guidance_stength, image_size_ratio],
outputs=[input_image, seed_slider], scroll_to_output=True
).then(
fn=update_sketch_dimensions,
inputs=[input_image, sketch_image],
outputs=[sketch_image, sketch_image]
)
# Update the state variable with the prerendered image filepath when an image is selected
prerendered_image_gallery.select(
fn=on_prerendered_gallery_selection,
inputs=None,
outputs=[gr.State(current_prerendered_image)], # Update the state with the selected image
show_api=False
)
# replace input image with selected gallery image
replace_input_image_button.click(
lambda: current_prerendered_image.value,
inputs=None,
outputs=[input_image], scroll_to_output=True
).then(
fn=update_sketch_dimensions,
inputs=[input_image, sketch_image],
outputs=[sketch_image, sketch_image]
)
output_overlay_composite.change(
fn=combine_images_with_lerp,
inputs=[input_image, output_image, output_overlay_composite],
outputs=[overlay_image], scroll_to_output=True
)
output_blend_multiply_composite.change(
fn=multiply_and_blend_images,
inputs=[input_image, output_image, output_blend_multiply_composite],
outputs=[overlay_image],
scroll_to_output=True
)
output_alpha_composite.change(
fn=alpha_composite_with_control,
inputs=[input_image, output_image, output_alpha_composite],
outputs=[overlay_image],
scroll_to_output=True
)
add_border_button.click(
fn=lambda image_source, mask_w, mask_h, color, opacity, input_img, overlay_img: add_border(input_img if image_source == "Input Image" else overlay_img, mask_w, mask_h, update_color_opacity(detect_color_format(color), opacity * 2.55)),
inputs=[border_image_source, mask_width, mask_height, margin_color, margin_opacity, input_image, overlay_image],
outputs=[bordered_image_output],
scroll_to_output=True
)
# 3D Generation
# generate_depth_button.click(
# fn=generate_depth_button_click,
# inputs=[depth_image_source, resized_width_slider, z_scale_slider, input_image, output_image, overlay_image, bordered_image_output],
# outputs=[depth_map_output, model_output, model_file], scroll_to_output=True
# )
# Chain the buttons
generate_3d_asset_button.click(
fn=generate_3d_asset_part1,
inputs=[depth_image_source, randomize_seed_3d, seed_3d, input_image, output_image, overlay_image, bordered_image_output],
outputs=[depth_output, ddd_image_path, ddd_file_name, seed_3d ],
scroll_to_output=True
).then(
fn=generate_3d_asset_part2,
inputs=[depth_output, ddd_image_path, ddd_file_name, seed_3d, steps, model_resolution, video_resolution ],
outputs=[output_buf, video_output, depth_output],
scroll_to_output=True
).then(
lambda: (gr.Button(interactive=True), gr.Button(interactive=True)),
outputs=[extract_glb_btn, extract_gaussian_btn]
)
# Extraction callbacks remain unchanged from previous behavior
extract_glb_btn.click(
fn=extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, glb_file]
).then(
lambda: gr.Button(interactive=True),
outputs=[glb_file]
)
extract_gaussian_btn.click(
fn=extract_gaussian,
inputs=[output_buf],
outputs=[model_output, gaussian_file]
).then(
lambda: gr.Button(interactive=True),
outputs=[gaussian_file]
)
if __name__ == "__main__":
constants.load_env_vars(constants.dotenv_path)
logging.basicConfig(
format="[%(levelname)s] %(asctime)s %(message)s", level=logging.INFO
)
logging.info("Environment Variables: %s" % os.environ)
# if _get_output(["nvcc", "--version"]) is None:
# logging.info("Installing CUDA toolkit...")
# install_cuda_toolkit()
# else:
# logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"]))
# logging.info("Installing CUDA extensions...")
# setup_runtime_env()
#main(os.getenv("DEBUG") == "1")
#main()
#-------------- ------------------------------------------------MODEL INITIALIZATION------------------------------------------------------------#
# Load models once during module import
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=good_vae).to(device)
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True)
TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
TRELLIS_PIPELINE.to(device)
try:
TRELLIS_PIPELINE.preprocess_image(Image.fromarray(np.zeros((256, 256, 3), dtype=np.uint8))) # Preload rembg
except:
pass
hexaGrid.queue(default_concurrency_limit=1,max_size=12,api_open=False)
hexaGrid.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered", 'e:/TMP'], favicon_path="./assets/favicon.ico", max_file_size="10mb")
|