File size: 8,957 Bytes
faf797f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cff785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faf797f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cff785
faf797f
 
7cff785
 
 
 
faf797f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cff785
faf797f
 
 
 
 
 
7cff785
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
import numpy as np
from tqdm import tqdm
import utils3d
from PIL import Image

from ..renderers import OctreeRenderer, GaussianRenderer, MeshRenderer
from ..representations import Octree, Gaussian, MeshExtractResult
from ..modules import sparse as sp
from .random_utils import sphere_hammersley_sequence


def yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, rs, fovs):
    is_list = isinstance(yaws, list)
    if not is_list:
        yaws = [yaws]
        pitchs = [pitchs]
    if not isinstance(rs, list):
        rs = [rs] * len(yaws)
    if not isinstance(fovs, list):
        fovs = [fovs] * len(yaws)
    extrinsics = []
    intrinsics = []
    for yaw, pitch, r, fov in zip(yaws, pitchs, rs, fovs):
        fov = torch.deg2rad(torch.tensor(float(fov))).cuda()
        yaw = torch.tensor(float(yaw)).cuda()
        pitch = torch.tensor(float(pitch)).cuda()
        orig = torch.tensor([
            torch.sin(yaw) * torch.cos(pitch),
            torch.cos(yaw) * torch.cos(pitch),
            torch.sin(pitch),
        ]).cuda() * r
        extr = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
        intr = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
        extrinsics.append(extr)
        intrinsics.append(intr)
    if not is_list:
        extrinsics = extrinsics[0]
        intrinsics = intrinsics[0]
    return extrinsics, intrinsics


def render_frames(sample, extrinsics, intrinsics, options={}, colors_overwrite=None, verbose=True, **kwargs):
    if isinstance(sample, Octree):
        renderer = OctreeRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 512)
        renderer.rendering_options.near = options.get('near', 0.8)
        renderer.rendering_options.far = options.get('far', 1.6)
        renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
        renderer.rendering_options.ssaa = options.get('ssaa', 4)
        renderer.pipe.primitive = sample.primitive
    elif isinstance(sample, Gaussian):
        renderer = GaussianRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 512)
        renderer.rendering_options.near = options.get('near', 0.8)
        renderer.rendering_options.far = options.get('far', 1.6)
        renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
        renderer.rendering_options.ssaa = options.get('ssaa', 1)
        renderer.pipe.kernel_size = kwargs.get('kernel_size', 0.1)
        renderer.pipe.use_mip_gaussian = True
    elif isinstance(sample, MeshExtractResult):
        renderer = MeshRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 512)
        renderer.rendering_options.near = options.get('near', 1)
        renderer.rendering_options.far = options.get('far', 100)
        renderer.rendering_options.ssaa = options.get('ssaa', 4)
    else:
        raise ValueError(f'Unsupported sample type: {type(sample)}')
    
    rets = {}
    for j, (extr, intr) in tqdm(enumerate(zip(extrinsics, intrinsics)), desc='Rendering', disable=not verbose):
        if not isinstance(sample, MeshExtractResult):
            res = renderer.render(sample, extr, intr, colors_overwrite=colors_overwrite)
            if 'color' not in rets: rets['color'] = []
            # if 'depth' not in rets: rets['depth'] = []
            rets['color'].append(np.clip(res['color'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
            # if 'percent_depth' in res:
            #     rets['depth'].append(res['percent_depth'].detach().cpu().numpy())
            # elif 'depth' in res:
            #     rets['depth'].append(res['depth'].detach().cpu().numpy())
            # else:
            #     rets['depth'].append(None)
        else:
            res = renderer.render(sample, extr, intr)
            if 'normal' not in rets: rets['normal'] = []
            rets['normal'].append(np.clip(res['normal'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))

    return rets

def render_frames_depth(sample, extrinsics, intrinsics, options={}, colors_overwrite=None, verbose=True, **kwargs):
    if isinstance(sample, Octree):
        renderer = OctreeRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 512)
        renderer.rendering_options.near = options.get('near', 0.8)
        renderer.rendering_options.far = options.get('far', 1.6)
        renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
        renderer.rendering_options.ssaa = options.get('ssaa', 4)
        renderer.pipe.primitive = sample.primitive
    elif isinstance(sample, Gaussian):
        renderer = GaussianRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 512)
        renderer.rendering_options.near = options.get('near', 0.8)
        renderer.rendering_options.far = options.get('far', 1.6)
        renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
        renderer.rendering_options.ssaa = options.get('ssaa', 1)
        renderer.pipe.kernel_size = kwargs.get('kernel_size', 0.1)
        renderer.pipe.use_mip_gaussian = True
    elif isinstance(sample, MeshExtractResult):
        renderer = MeshRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 512)
        renderer.rendering_options.near = options.get('near', 1)
        renderer.rendering_options.far = options.get('far', 100)
        renderer.rendering_options.ssaa = options.get('ssaa', 4)
    else:
        raise ValueError(f'Unsupported sample type: {type(sample)}')
    
    rets = {}
    for j, (extr, intr) in tqdm(enumerate(zip(extrinsics, intrinsics)), desc='Rendering', disable=not verbose):
        if not isinstance(sample, MeshExtractResult):
            res = renderer.render(sample, extr, intr, colors_overwrite=colors_overwrite)
            if 'color' not in rets: rets['color'] = []
            if 'depth' not in rets: rets['depth'] = []
            rets['color'].append(np.clip(res['color'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
            if 'percent_depth' in res:
                rets['depth'].append(res['percent_depth'].detach().cpu().numpy())
            elif 'depth' in res:
                rets['depth'].append(res['depth'].detach().cpu().numpy())
            else:
                rets['depth'].append(None)
        else:
            res = renderer.render(sample, extr, intr)
            if 'depth' not in rets: rets['depth'] = []
            if 'normal' not in rets: rets['normal'] = []
            rets['normal'].append(np.clip(res['normal'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
            if 'depth' in res:
                rets['depth'].append(np.clip(res['depth'].detach().cpu().numpy(), 0, 255).astype(np.uint8))
            else:
                rets['depth'].append(None)
    return rets

def render_video(sample, resolution=512, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40, **kwargs):
    yaws = torch.linspace(0, 2 * 3.1415, num_frames)
    pitch = 0.25 + 0.5 * torch.sin(torch.linspace(0, 2 * 3.1415, num_frames))
    yaws = yaws.tolist()
    pitch = pitch.tolist()
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitch, r, fov)
    return render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color}, **kwargs)


def render_multiview(sample, resolution=512, nviews=30):
    r = 2
    fov = 40
    cams = [sphere_hammersley_sequence(i, nviews) for i in range(nviews)]
    yaws = [cam[0] for cam in cams]
    pitchs = [cam[1] for cam in cams]
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, r, fov)
    res = render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': (0, 0, 0)})
    return res['color'], extrinsics, intrinsics


def render_snapshot(samples, resolution=512, bg_color=(0, 0, 0), offset=(-16 / 180 * np.pi, 20 / 180 * np.pi), r=2, fov=60, **kwargs):
    yaw = [0, np.pi/2, np.pi, 3*np.pi/2]
    yaw_offset = offset[0]
    yaw = [y + yaw_offset for y in yaw]
    pitch = [offset[1] for _ in range(4)]
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaw, pitch, r, fov)
    return render_frames(samples, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color}, **kwargs)

def render_snapshot_depth(samples, resolution=512, bg_color=(0, 0, 0), offset=(0, np.pi/2), r=2, fov=90, **kwargs):
    yaw = [0, np.pi/2, np.pi, 3*np.pi/2]
    yaw_offset = offset[0]
    yaw = [y + yaw_offset for y in yaw]
    pitch = [offset[1] for _ in range(4)]
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaw, pitch, r, fov)
    return render_frames_depth(samples, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color}, **kwargs)