import os import torch import numpy as np from einops import rearrange from annotator.pidinet.model import pidinet from annotator.util import safe_step from annotator.base_annotator import BaseProcessor remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth" class PidInet(BaseProcessor): def __init__(self, **kwargs): super().__init__(**kwargs) self.model_dir = os.path.join(self.models_path, "pidinet") self.netNetwork = None def unload_model(self): if self.netNetwork is not None: self.netNetwork.cpu() def load_model(self): modelpath = os.path.join(self.model_dir, "table5_pidinet.pth") if not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=self.model_dir) self.netNetwork = pidinet() ckp = torch.load(modelpath)['state_dict'] self.netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in ckp.items()}) def __call__(self, input_image, is_safe=False, apply_fliter=False, **kwargs): if self.netNetwork is None: self.load_model() self.netNetwork = self.netNetwork.to(self.device) self.netNetwork.eval() assert input_image.ndim == 3 input_image = input_image[:, :, ::-1].copy() with torch.no_grad(): image_pidi = torch.from_numpy(input_image).float().to(self.device) image_pidi = image_pidi / 255.0 image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') edge = self.netNetwork(image_pidi)[-1] edge = edge.cpu().numpy() if apply_fliter: edge = edge > 0.5 if is_safe: edge = safe_step(edge) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) return edge[0][0]