Huang
addd
75889ad
raw
history blame
1.93 kB
import os
import torch
import numpy as np
from einops import rearrange
from annotator.pidinet.model import pidinet
from annotator.util import safe_step
from annotator.base_annotator import BaseProcessor
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth"
class PidInet(BaseProcessor):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.model_dir = os.path.join(self.models_path, "pidinet")
self.netNetwork = None
def unload_model(self):
if self.netNetwork is not None:
self.netNetwork.cpu()
def load_model(self):
modelpath = os.path.join(self.model_dir, "table5_pidinet.pth")
if not os.path.exists(modelpath):
from basicsr.utils.download_util import load_file_from_url
load_file_from_url(remote_model_path, model_dir=self.model_dir)
self.netNetwork = pidinet()
ckp = torch.load(modelpath)['state_dict']
self.netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in ckp.items()})
def __call__(self, input_image, is_safe=False, apply_fliter=False, **kwargs):
if self.netNetwork is None:
self.load_model()
self.netNetwork = self.netNetwork.to(self.device)
self.netNetwork.eval()
assert input_image.ndim == 3
input_image = input_image[:, :, ::-1].copy()
with torch.no_grad():
image_pidi = torch.from_numpy(input_image).float().to(self.device)
image_pidi = image_pidi / 255.0
image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w')
edge = self.netNetwork(image_pidi)[-1]
edge = edge.cpu().numpy()
if apply_fliter:
edge = edge > 0.5
if is_safe:
edge = safe_step(edge)
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
return edge[0][0]