File size: 5,818 Bytes
11ccb1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792cb24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import importlib
import os
import gradio as gr

from annotator.util import resize_image, HWC3

config = {
    "canny": "CannyDetector",
    "hed": "HedDetector",
    "mlsd": "MLSDProcessor",
    "midas": "MidasProcessor",
    "openpose": "OpenposeDetector",
    "uniformer": "UniformerDetector"
}

package_annotator = "annotator"


def process_image(cls: str, img, res, *kwargs):
    img = resize_image(HWC3(img), res)
    # load_model()
    module_imp = importlib.import_module(package_annotator)
    model = getattr(module_imp, cls)
    image_processor = model()
    result = image_processor(img, *kwargs)
    if type(result) == tuple:
        return result
    return [result]


def process(cls):
    def process_fc(img, res, *args):
        return process_image(cls, img, res, *args)

    return process_fc


block = gr.Blocks().queue()
examples = [os.path.join(os.path.dirname(__file__), "examples/demo.jpeg")]
with block:
    with gr.Tab("Canny Edge"):
        with gr.Row():
            gr.Markdown("## Canny Edge")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="numpy")
                low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1)
                high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1)
                resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
                run_button = gr.Button(label="Run")
                gr.Examples(examples, input_image)
            with gr.Column():
                gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
        run_button.click(fn=process(config["canny"]), inputs=[input_image, resolution, low_threshold, high_threshold],
                         outputs=[gallery])

    with gr.Tab("HED Edge"):
        with gr.Row():
            gr.Markdown("## HED Edge")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="numpy")
                resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
                run_button = gr.Button(label="Run")
                gr.Examples(examples, input_image)
            with gr.Column():
                gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
        run_button.click(fn=process(config["hed"]), inputs=[input_image, resolution], outputs=[gallery])

    with gr.Tab("MLSD Edge"):
        with gr.Row():
            gr.Markdown("## MLSD Edge")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="numpy")
                value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
                distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1,
                                               step=0.01)
                resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
                run_button = gr.Button(label="Run")
                gr.Examples(examples, input_image)
            with gr.Column():
                gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
        run_button.click(fn=process(config["mlsd"]),
                         inputs=[input_image, resolution, value_threshold, distance_threshold],
                         outputs=[gallery])

    with gr.Tab("MIDAS Depth and Normal"):
        with gr.Row():
            gr.Markdown("## MIDAS Depth and Normal")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="numpy")
                alpha = gr.Slider(label="alpha", minimum=0.1, maximum=20.0, value=6.2, step=0.01)
                resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
                run_button = gr.Button(label="Run")
                gr.Examples(examples, input_image)
            with gr.Column():
                gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
        run_button.click(fn=process(config["midas"]), inputs=[input_image, resolution, alpha], outputs=[gallery])

    with gr.Tab("Openpose"):
        with gr.Row():
            gr.Markdown("## Openpose")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="numpy")
                hand = gr.Checkbox(label='detect hand', value=False)
                resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
                run_button = gr.Button(label="Run")
                gr.Examples(examples, input_image)
            with gr.Column():
                gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
        run_button.click(fn=process(config["openpose"]), inputs=[input_image, resolution, hand], outputs=[gallery])

    with gr.Tab("Uniformer Segmentation"):
        with gr.Row():
            gr.Markdown("## Uniformer Segmentation")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="numpy")
                resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
                run_button = gr.Button(label="Run")
                gr.Examples(examples, input_image)
            with gr.Column():
                gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
        run_button.click(fn=process(config["uniformer"]), inputs=[input_image, resolution], outputs=[gallery])

block.launch()