Spaces:
Runtime error
Runtime error
Create cli.py
Browse files- flux/cli.py +259 -0
flux/cli.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import time
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from glob import iglob
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from fire import Fire
|
| 10 |
+
from PIL import ExifTags, Image
|
| 11 |
+
from transformers import pipeline
|
| 12 |
+
|
| 13 |
+
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
|
| 14 |
+
from flux.util import (
|
| 15 |
+
configs,
|
| 16 |
+
load_ae,
|
| 17 |
+
load_clip,
|
| 18 |
+
load_flow_model,
|
| 19 |
+
load_t5,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
NSFW_THRESHOLD = 0.85
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@dataclass
|
| 26 |
+
class SamplingOptions:
|
| 27 |
+
prompt: str
|
| 28 |
+
width: int
|
| 29 |
+
height: int
|
| 30 |
+
num_steps: int
|
| 31 |
+
guidance: float
|
| 32 |
+
seed: int
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def parse_prompt(options: SamplingOptions) -> SamplingOptions:
|
| 36 |
+
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
|
| 37 |
+
usage = (
|
| 38 |
+
"Usage: Either write your prompt directly, leave this field empty "
|
| 39 |
+
"to repeat the prompt or write a command starting with a slash:\n"
|
| 40 |
+
"- '/w <width>' will set the width of the generated image\n"
|
| 41 |
+
"- '/h <height>' will set the height of the generated image\n"
|
| 42 |
+
"- '/s <seed>' sets the next seed\n"
|
| 43 |
+
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
|
| 44 |
+
"- '/n <steps>' sets the number of steps\n"
|
| 45 |
+
"- '/q' to quit"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
while (prompt := input(user_question)).startswith("/"):
|
| 49 |
+
if prompt.startswith("/w"):
|
| 50 |
+
if prompt.count(" ") != 1:
|
| 51 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
| 52 |
+
continue
|
| 53 |
+
_, width = prompt.split()
|
| 54 |
+
options.width = 16 * (int(width) // 16)
|
| 55 |
+
print(
|
| 56 |
+
f"Setting resolution to {options.width} x {options.height} "
|
| 57 |
+
f"({options.height * options.width / 1e6:.2f}MP)"
|
| 58 |
+
)
|
| 59 |
+
elif prompt.startswith("/h"):
|
| 60 |
+
if prompt.count(" ") != 1:
|
| 61 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
| 62 |
+
continue
|
| 63 |
+
_, height = prompt.split()
|
| 64 |
+
options.height = 16 * (int(height) // 16)
|
| 65 |
+
print(
|
| 66 |
+
f"Setting resolution to {options.width} x {options.height} "
|
| 67 |
+
f"({options.height * options.width / 1e6:.2f}MP)"
|
| 68 |
+
)
|
| 69 |
+
elif prompt.startswith("/g"):
|
| 70 |
+
if prompt.count(" ") != 1:
|
| 71 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
| 72 |
+
continue
|
| 73 |
+
_, guidance = prompt.split()
|
| 74 |
+
options.guidance = float(guidance)
|
| 75 |
+
print(f"Setting guidance to {options.guidance}")
|
| 76 |
+
elif prompt.startswith("/s"):
|
| 77 |
+
if prompt.count(" ") != 1:
|
| 78 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
| 79 |
+
continue
|
| 80 |
+
_, seed = prompt.split()
|
| 81 |
+
options.seed = int(seed)
|
| 82 |
+
print(f"Setting seed to {options.seed}")
|
| 83 |
+
elif prompt.startswith("/n"):
|
| 84 |
+
if prompt.count(" ") != 1:
|
| 85 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
| 86 |
+
continue
|
| 87 |
+
_, steps = prompt.split()
|
| 88 |
+
options.num_steps = int(steps)
|
| 89 |
+
print(f"Setting seed to {options.num_steps}")
|
| 90 |
+
elif prompt.startswith("/q"):
|
| 91 |
+
print("Quitting")
|
| 92 |
+
return None
|
| 93 |
+
else:
|
| 94 |
+
if not prompt.startswith("/h"):
|
| 95 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
| 96 |
+
print(usage)
|
| 97 |
+
if prompt != "":
|
| 98 |
+
options.prompt = prompt
|
| 99 |
+
return options
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@torch.inference_mode()
|
| 103 |
+
def main(
|
| 104 |
+
name: str = "flux-schnell",
|
| 105 |
+
width: int = 1360,
|
| 106 |
+
height: int = 768,
|
| 107 |
+
seed: int = None,
|
| 108 |
+
prompt: str = (
|
| 109 |
+
"a photo of a forest with mist swirling around the tree trunks. The word "
|
| 110 |
+
'"FLUX" is painted over it in big, red brush strokes with visible texture'
|
| 111 |
+
),
|
| 112 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
| 113 |
+
num_steps: int = None,
|
| 114 |
+
loop: bool = False,
|
| 115 |
+
guidance: float = 3.5,
|
| 116 |
+
offload: bool = False,
|
| 117 |
+
output_dir: str = "output",
|
| 118 |
+
add_sampling_metadata: bool = True,
|
| 119 |
+
):
|
| 120 |
+
"""
|
| 121 |
+
Sample the flux model. Either interactively (set `--loop`) or run for a
|
| 122 |
+
single image.
|
| 123 |
+
Args:
|
| 124 |
+
name: Name of the model to load
|
| 125 |
+
height: height of the sample in pixels (should be a multiple of 16)
|
| 126 |
+
width: width of the sample in pixels (should be a multiple of 16)
|
| 127 |
+
seed: Set a seed for sampling
|
| 128 |
+
output_name: where to save the output image, `{idx}` will be replaced
|
| 129 |
+
by the index of the sample
|
| 130 |
+
prompt: Prompt used for sampling
|
| 131 |
+
device: Pytorch device
|
| 132 |
+
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
|
| 133 |
+
loop: start an interactive session and sample multiple times
|
| 134 |
+
guidance: guidance value used for guidance distillation
|
| 135 |
+
add_sampling_metadata: Add the prompt to the image Exif metadata
|
| 136 |
+
"""
|
| 137 |
+
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
|
| 138 |
+
|
| 139 |
+
if name not in configs:
|
| 140 |
+
available = ", ".join(configs.keys())
|
| 141 |
+
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
| 142 |
+
|
| 143 |
+
torch_device = torch.device(device)
|
| 144 |
+
if num_steps is None:
|
| 145 |
+
num_steps = 4 if name == "flux-schnell" else 50
|
| 146 |
+
|
| 147 |
+
# allow for packing and conversion to latent space
|
| 148 |
+
height = 16 * (height // 16)
|
| 149 |
+
width = 16 * (width // 16)
|
| 150 |
+
|
| 151 |
+
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
| 152 |
+
if not os.path.exists(output_dir):
|
| 153 |
+
os.makedirs(output_dir)
|
| 154 |
+
idx = 0
|
| 155 |
+
else:
|
| 156 |
+
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]\.jpg$", fn)]
|
| 157 |
+
if len(fns) > 0:
|
| 158 |
+
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
| 159 |
+
else:
|
| 160 |
+
idx = 0
|
| 161 |
+
|
| 162 |
+
# init all components
|
| 163 |
+
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
|
| 164 |
+
clip = load_clip(torch_device)
|
| 165 |
+
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
| 166 |
+
ae = load_ae(name, device="cpu" if offload else torch_device)
|
| 167 |
+
|
| 168 |
+
rng = torch.Generator(device="cpu")
|
| 169 |
+
opts = SamplingOptions(
|
| 170 |
+
prompt=prompt,
|
| 171 |
+
width=width,
|
| 172 |
+
height=height,
|
| 173 |
+
num_steps=num_steps,
|
| 174 |
+
guidance=guidance,
|
| 175 |
+
seed=seed,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
if loop:
|
| 179 |
+
opts = parse_prompt(opts)
|
| 180 |
+
|
| 181 |
+
while opts is not None:
|
| 182 |
+
if opts.seed is None:
|
| 183 |
+
opts.seed = rng.seed()
|
| 184 |
+
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
|
| 185 |
+
t0 = time.perf_counter()
|
| 186 |
+
|
| 187 |
+
# prepare input
|
| 188 |
+
x = get_noise(
|
| 189 |
+
1,
|
| 190 |
+
opts.height,
|
| 191 |
+
opts.width,
|
| 192 |
+
device=torch_device,
|
| 193 |
+
dtype=torch.bfloat16,
|
| 194 |
+
seed=opts.seed,
|
| 195 |
+
)
|
| 196 |
+
opts.seed = None
|
| 197 |
+
if offload:
|
| 198 |
+
ae = ae.cpu()
|
| 199 |
+
torch.cuda.empty_cache()
|
| 200 |
+
t5, clip = t5.to(torch_device), clip.to(torch_device)
|
| 201 |
+
inp = prepare(t5, clip, x, prompt=opts.prompt)
|
| 202 |
+
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
| 203 |
+
|
| 204 |
+
# offload TEs to CPU, load model to gpu
|
| 205 |
+
if offload:
|
| 206 |
+
t5, clip = t5.cpu(), clip.cpu()
|
| 207 |
+
torch.cuda.empty_cache()
|
| 208 |
+
model = model.to(torch_device)
|
| 209 |
+
|
| 210 |
+
# denoise initial noise
|
| 211 |
+
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
|
| 212 |
+
|
| 213 |
+
# offload model, load autoencoder to gpu
|
| 214 |
+
if offload:
|
| 215 |
+
model.cpu()
|
| 216 |
+
torch.cuda.empty_cache()
|
| 217 |
+
ae.decoder.to(x.device)
|
| 218 |
+
|
| 219 |
+
# decode latents to pixel space
|
| 220 |
+
x = unpack(x.float(), opts.height, opts.width)
|
| 221 |
+
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
| 222 |
+
x = ae.decode(x)
|
| 223 |
+
t1 = time.perf_counter()
|
| 224 |
+
|
| 225 |
+
fn = output_name.format(idx=idx)
|
| 226 |
+
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
|
| 227 |
+
# bring into PIL format and save
|
| 228 |
+
x = x.clamp(-1, 1)
|
| 229 |
+
# x = embed_watermark(x.float())
|
| 230 |
+
x = rearrange(x[0], "c h w -> h w c")
|
| 231 |
+
|
| 232 |
+
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
| 233 |
+
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
|
| 234 |
+
|
| 235 |
+
if nsfw_score < NSFW_THRESHOLD:
|
| 236 |
+
exif_data = Image.Exif()
|
| 237 |
+
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
|
| 238 |
+
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
|
| 239 |
+
exif_data[ExifTags.Base.Model] = name
|
| 240 |
+
if add_sampling_metadata:
|
| 241 |
+
exif_data[ExifTags.Base.ImageDescription] = prompt
|
| 242 |
+
img.save(fn, exif=exif_data, quality=95, subsampling=0)
|
| 243 |
+
idx += 1
|
| 244 |
+
else:
|
| 245 |
+
print("Your generated image may contain NSFW content.")
|
| 246 |
+
|
| 247 |
+
if loop:
|
| 248 |
+
print("-" * 80)
|
| 249 |
+
opts = parse_prompt(opts)
|
| 250 |
+
else:
|
| 251 |
+
opts = None
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def app():
|
| 255 |
+
Fire(main)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
if __name__ == "__main__":
|
| 259 |
+
app()
|