Spaces:
Runtime error
Runtime error
Delete eva_clip/flux/modules/conditioner.py
Browse files
eva_clip/flux/modules/conditioner.py
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
from torch import Tensor, nn
|
| 2 |
-
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
class HFEmbedder(nn.Module):
|
| 6 |
-
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
| 7 |
-
super().__init__()
|
| 8 |
-
self.is_clip = version.startswith("openai")
|
| 9 |
-
self.max_length = max_length
|
| 10 |
-
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
| 11 |
-
|
| 12 |
-
if self.is_clip:
|
| 13 |
-
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
| 14 |
-
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
| 15 |
-
else:
|
| 16 |
-
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
| 17 |
-
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
| 18 |
-
|
| 19 |
-
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
| 20 |
-
|
| 21 |
-
def forward(self, text: list[str]) -> Tensor:
|
| 22 |
-
batch_encoding = self.tokenizer(
|
| 23 |
-
text,
|
| 24 |
-
truncation=True,
|
| 25 |
-
max_length=self.max_length,
|
| 26 |
-
return_length=False,
|
| 27 |
-
return_overflowing_tokens=False,
|
| 28 |
-
padding="max_length",
|
| 29 |
-
return_tensors="pt",
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
outputs = self.hf_module(
|
| 33 |
-
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
| 34 |
-
attention_mask=None,
|
| 35 |
-
output_hidden_states=False,
|
| 36 |
-
)
|
| 37 |
-
return outputs[self.output_key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|