Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,146 +1,232 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
| 3 |
import random
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
import torch
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
| 12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
-
pipe = pipe.to(device)
|
| 14 |
-
else:
|
| 15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
| 16 |
-
pipe = pipe.to(device)
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
generator = generator
|
| 36 |
-
).images[0]
|
| 37 |
-
|
| 38 |
return image
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
]
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
if torch.cuda.is_available():
|
| 54 |
-
power_device = "GPU"
|
| 55 |
-
else:
|
| 56 |
-
power_device = "CPU"
|
| 57 |
-
|
| 58 |
-
with gr.Blocks(css=css) as demo:
|
| 59 |
-
|
| 60 |
-
with gr.Column(elem_id="col-container"):
|
| 61 |
-
gr.Markdown(f"""
|
| 62 |
-
# Text-to-Image Gradio Template
|
| 63 |
-
Currently running on {power_device}.
|
| 64 |
-
""")
|
| 65 |
-
|
| 66 |
-
with gr.Row():
|
| 67 |
-
|
| 68 |
-
prompt = gr.Text(
|
| 69 |
-
label="Prompt",
|
| 70 |
-
show_label=False,
|
| 71 |
-
max_lines=1,
|
| 72 |
-
placeholder="Enter your prompt",
|
| 73 |
-
container=False,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
run_button = gr.Button("Run", scale=0)
|
| 77 |
-
|
| 78 |
-
result = gr.Image(label="Result", show_label=False)
|
| 79 |
-
|
| 80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 81 |
-
|
| 82 |
-
negative_prompt = gr.Text(
|
| 83 |
-
label="Negative prompt",
|
| 84 |
-
max_lines=1,
|
| 85 |
-
placeholder="Enter a negative prompt",
|
| 86 |
-
visible=False,
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
seed = gr.Slider(
|
| 90 |
-
label="Seed",
|
| 91 |
-
minimum=0,
|
| 92 |
-
maximum=MAX_SEED,
|
| 93 |
-
step=1,
|
| 94 |
-
value=0,
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 98 |
-
|
| 99 |
-
with gr.Row():
|
| 100 |
-
|
| 101 |
-
width = gr.Slider(
|
| 102 |
-
label="Width",
|
| 103 |
-
minimum=256,
|
| 104 |
-
maximum=MAX_IMAGE_SIZE,
|
| 105 |
-
step=32,
|
| 106 |
-
value=512,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
height = gr.Slider(
|
| 110 |
-
label="Height",
|
| 111 |
-
minimum=256,
|
| 112 |
-
maximum=MAX_IMAGE_SIZE,
|
| 113 |
-
step=32,
|
| 114 |
-
value=512,
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
with gr.Row():
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
value=0.0,
|
| 125 |
)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
| 131 |
step=1,
|
| 132 |
-
value=
|
| 133 |
)
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
gr.Examples(
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
fn
|
| 142 |
-
inputs
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
)
|
| 145 |
|
| 146 |
-
demo.
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
+
import requests
|
| 4 |
import random
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import spaces
|
| 8 |
import torch
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from diffusers import FluxInpaintPipeline
|
| 11 |
|
| 12 |
+
"""
|
| 13 |
+
A big shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for making their models available.
|
| 14 |
+
Also a big thanks to [Gothos](https://github.com/Gothos) for enabling inpainting with the FLUX.
|
| 15 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
MAX_SEED = np.iinfo(np.int32).max
|
| 18 |
+
IMAGE_SIZE = 1024
|
| 19 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
| 23 |
+
image = image.convert("RGBA")
|
| 24 |
+
data = image.getdata()
|
| 25 |
+
new_data = []
|
| 26 |
+
for item in data:
|
| 27 |
+
avg = sum(item[:3]) / 3
|
| 28 |
+
if avg < threshold:
|
| 29 |
+
new_data.append((0, 0, 0, 0))
|
| 30 |
+
else:
|
| 31 |
+
new_data.append(item)
|
| 32 |
+
|
| 33 |
+
image.putdata(new_data)
|
|
|
|
|
|
|
|
|
|
| 34 |
return image
|
| 35 |
|
| 36 |
+
|
| 37 |
+
EXAMPLES = [
|
| 38 |
+
[
|
| 39 |
+
{
|
| 40 |
+
"background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
| 41 |
+
"layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2.png", stream=True).raw))],
|
| 42 |
+
"composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
|
| 43 |
+
},
|
| 44 |
+
"little lion",
|
| 45 |
+
42,
|
| 46 |
+
False,
|
| 47 |
+
0.85,
|
| 48 |
+
30
|
| 49 |
+
],
|
| 50 |
+
[
|
| 51 |
+
{
|
| 52 |
+
"background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
| 53 |
+
"layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-3.png", stream=True).raw))],
|
| 54 |
+
"composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
|
| 55 |
+
},
|
| 56 |
+
"tribal tattoos",
|
| 57 |
+
42,
|
| 58 |
+
False,
|
| 59 |
+
0.85,
|
| 60 |
+
30
|
| 61 |
+
]
|
| 62 |
]
|
| 63 |
|
| 64 |
+
pipe = FluxInpaintPipeline.from_pretrained(
|
| 65 |
+
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def resize_image_dimensions(
|
| 69 |
+
original_resolution_wh: Tuple[int, int],
|
| 70 |
+
maximum_dimension: int = IMAGE_SIZE
|
| 71 |
+
) -> Tuple[int, int]:
|
| 72 |
+
width, height = original_resolution_wh
|
| 73 |
+
|
| 74 |
+
if width > height:
|
| 75 |
+
scaling_factor = maximum_dimension / width
|
| 76 |
+
else:
|
| 77 |
+
scaling_factor = maximum_dimension / height
|
| 78 |
+
|
| 79 |
+
new_width = int(width * scaling_factor)
|
| 80 |
+
new_height = int(height * scaling_factor)
|
| 81 |
+
|
| 82 |
+
new_width = new_width - (new_width % 32)
|
| 83 |
+
new_height = new_height - (new_height % 32)
|
| 84 |
+
|
| 85 |
+
return new_width, new_height
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@spaces.GPU(duration=100)
|
| 89 |
+
def process(
|
| 90 |
+
input_image_editor: dict,
|
| 91 |
+
input_text: str,
|
| 92 |
+
seed_slicer: int,
|
| 93 |
+
randomize_seed_checkbox: bool,
|
| 94 |
+
strength_slider: float,
|
| 95 |
+
num_inference_steps_slider: int,
|
| 96 |
+
progress=gr.Progress(track_tqdm=True)
|
| 97 |
+
):
|
| 98 |
+
if not input_text:
|
| 99 |
+
gr.Info("Please enter a text prompt.")
|
| 100 |
+
return None, None
|
| 101 |
+
|
| 102 |
+
image = input_image_editor['background']
|
| 103 |
+
mask = input_image_editor['layers'][0]
|
| 104 |
+
|
| 105 |
+
if not image:
|
| 106 |
+
gr.Info("Please upload an image.")
|
| 107 |
+
return None, None
|
| 108 |
+
|
| 109 |
+
if not mask:
|
| 110 |
+
gr.Info("Please draw a mask on the image.")
|
| 111 |
+
return None, None
|
| 112 |
+
|
| 113 |
+
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
| 114 |
+
resized_image = image.resize((width, height), Image.LANCZOS)
|
| 115 |
+
resized_mask = mask.resize((width, height), Image.LANCZOS)
|
| 116 |
+
|
| 117 |
+
if randomize_seed_checkbox:
|
| 118 |
+
seed_slicer = random.randint(0, MAX_SEED)
|
| 119 |
+
generator = torch.Generator().manual_seed(seed_slicer)
|
| 120 |
+
result = pipe(
|
| 121 |
+
prompt=input_text,
|
| 122 |
+
image=resized_image,
|
| 123 |
+
mask_image=resized_mask,
|
| 124 |
+
width=width,
|
| 125 |
+
height=height,
|
| 126 |
+
strength=strength_slider,
|
| 127 |
+
generator=generator,
|
| 128 |
+
num_inference_steps=num_inference_steps_slider
|
| 129 |
+
).images[0]
|
| 130 |
+
print('INFERENCE DONE')
|
| 131 |
+
return result, resized_mask
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
with gr.Blocks() as demo:
|
| 135 |
+
gr.Markdown(MARKDOWN)
|
| 136 |
+
with gr.Row():
|
| 137 |
+
with gr.Column():
|
| 138 |
+
input_image_editor_component = gr.ImageEditor(
|
| 139 |
+
label='Image',
|
| 140 |
+
type='pil',
|
| 141 |
+
sources=["upload", "webcam"],
|
| 142 |
+
image_mode='RGB',
|
| 143 |
+
layers=False,
|
| 144 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
with gr.Row():
|
| 147 |
+
input_text_component = gr.Text(
|
| 148 |
+
label="Prompt",
|
| 149 |
+
show_label=False,
|
| 150 |
+
max_lines=1,
|
| 151 |
+
placeholder="Enter your prompt",
|
| 152 |
+
container=False,
|
|
|
|
| 153 |
)
|
| 154 |
+
submit_button_component = gr.Button(
|
| 155 |
+
value='Submit', variant='primary', scale=0)
|
| 156 |
+
|
| 157 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 158 |
+
seed_slicer_component = gr.Slider(
|
| 159 |
+
label="Seed",
|
| 160 |
+
minimum=0,
|
| 161 |
+
maximum=MAX_SEED,
|
| 162 |
step=1,
|
| 163 |
+
value=42,
|
| 164 |
)
|
| 165 |
+
|
| 166 |
+
randomize_seed_checkbox_component = gr.Checkbox(
|
| 167 |
+
label="Randomize seed", value=True)
|
| 168 |
+
|
| 169 |
+
with gr.Row():
|
| 170 |
+
strength_slider_component = gr.Slider(
|
| 171 |
+
label="Strength",
|
| 172 |
+
info="Indicates extent to transform the reference `image`. "
|
| 173 |
+
"Must be between 0 and 1. `image` is used as a starting "
|
| 174 |
+
"point and more noise is added the higher the `strength`.",
|
| 175 |
+
minimum=0,
|
| 176 |
+
maximum=1,
|
| 177 |
+
step=0.01,
|
| 178 |
+
value=0.85,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
num_inference_steps_slider_component = gr.Slider(
|
| 182 |
+
label="Number of inference steps",
|
| 183 |
+
info="The number of denoising steps. More denoising steps "
|
| 184 |
+
"usually lead to a higher quality image at the",
|
| 185 |
+
minimum=1,
|
| 186 |
+
maximum=50,
|
| 187 |
+
step=1,
|
| 188 |
+
value=20,
|
| 189 |
+
)
|
| 190 |
+
with gr.Column():
|
| 191 |
+
output_image_component = gr.Image(
|
| 192 |
+
type='pil', image_mode='RGB', label='Generated image', format="png")
|
| 193 |
+
with gr.Accordion("Debug", open=False):
|
| 194 |
+
output_mask_component = gr.Image(
|
| 195 |
+
type='pil', image_mode='RGB', label='Input mask', format="png")
|
| 196 |
+
with gr.Row():
|
| 197 |
gr.Examples(
|
| 198 |
+
fn=process,
|
| 199 |
+
examples=EXAMPLES,
|
| 200 |
+
inputs=[
|
| 201 |
+
input_image_editor_component,
|
| 202 |
+
input_text_component,
|
| 203 |
+
seed_slicer_component,
|
| 204 |
+
randomize_seed_checkbox_component,
|
| 205 |
+
strength_slider_component,
|
| 206 |
+
num_inference_steps_slider_component
|
| 207 |
+
],
|
| 208 |
+
outputs=[
|
| 209 |
+
output_image_component,
|
| 210 |
+
output_mask_component
|
| 211 |
+
],
|
| 212 |
+
run_on_click=True,
|
| 213 |
+
cache_examples=True
|
| 214 |
)
|
| 215 |
|
| 216 |
+
submit_button_component.click(
|
| 217 |
+
fn=process,
|
| 218 |
+
inputs=[
|
| 219 |
+
input_image_editor_component,
|
| 220 |
+
input_text_component,
|
| 221 |
+
seed_slicer_component,
|
| 222 |
+
randomize_seed_checkbox_component,
|
| 223 |
+
strength_slider_component,
|
| 224 |
+
num_inference_steps_slider_component
|
| 225 |
+
],
|
| 226 |
+
outputs=[
|
| 227 |
+
output_image_component,
|
| 228 |
+
output_mask_component
|
| 229 |
+
]
|
| 230 |
)
|
| 231 |
|
| 232 |
+
demo.launch(debug=False, show_error=True)
|