Spaces:
Build error
Build error
Create train_utils.py
Browse files- utils/train_utils.py +360 -0
utils/train_utils.py
ADDED
|
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import contextlib
|
| 3 |
+
import time
|
| 4 |
+
import gc
|
| 5 |
+
import logging
|
| 6 |
+
import math
|
| 7 |
+
import os
|
| 8 |
+
import random
|
| 9 |
+
import jsonlines
|
| 10 |
+
import functools
|
| 11 |
+
import shutil
|
| 12 |
+
import pyrallis
|
| 13 |
+
import itertools
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from collections import namedtuple, OrderedDict
|
| 16 |
+
|
| 17 |
+
import accelerate
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
import torch.utils.checkpoint
|
| 22 |
+
import transformers
|
| 23 |
+
from accelerate import Accelerator
|
| 24 |
+
from accelerate.logging import get_logger
|
| 25 |
+
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
|
| 26 |
+
from datasets import load_dataset
|
| 27 |
+
from packaging import version
|
| 28 |
+
from PIL import Image
|
| 29 |
+
from losses.losses import *
|
| 30 |
+
from torchvision import transforms
|
| 31 |
+
from torchvision.transforms.functional import crop
|
| 32 |
+
from tqdm.auto import tqdm
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def import_model_class_from_model_name_or_path(
|
| 36 |
+
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
| 37 |
+
):
|
| 38 |
+
from transformers import PretrainedConfig
|
| 39 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
| 40 |
+
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
| 41 |
+
)
|
| 42 |
+
model_class = text_encoder_config.architectures[0]
|
| 43 |
+
|
| 44 |
+
if model_class == "CLIPTextModel":
|
| 45 |
+
from transformers import CLIPTextModel
|
| 46 |
+
|
| 47 |
+
return CLIPTextModel
|
| 48 |
+
elif model_class == "CLIPTextModelWithProjection":
|
| 49 |
+
from transformers import CLIPTextModelWithProjection
|
| 50 |
+
|
| 51 |
+
return CLIPTextModelWithProjection
|
| 52 |
+
else:
|
| 53 |
+
raise ValueError(f"{model_class} is not supported.")
|
| 54 |
+
|
| 55 |
+
def get_train_dataset(dataset_name, dataset_dir, args, accelerator):
|
| 56 |
+
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
| 57 |
+
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
|
| 58 |
+
|
| 59 |
+
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
| 60 |
+
# download the dataset.
|
| 61 |
+
dataset = load_dataset(
|
| 62 |
+
dataset_name,
|
| 63 |
+
data_dir=dataset_dir,
|
| 64 |
+
cache_dir=os.path.join(dataset_dir, ".cache"),
|
| 65 |
+
num_proc=4,
|
| 66 |
+
split="train",
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Preprocessing the datasets.
|
| 70 |
+
# We need to tokenize inputs and targets.
|
| 71 |
+
column_names = dataset.column_names
|
| 72 |
+
|
| 73 |
+
# 6. Get the column names for input/target.
|
| 74 |
+
if args.image_column is None:
|
| 75 |
+
args.image_column = column_names[0]
|
| 76 |
+
logger.info(f"image column defaulting to {column_names[0]}")
|
| 77 |
+
else:
|
| 78 |
+
image_column = args.image_column
|
| 79 |
+
if image_column not in column_names:
|
| 80 |
+
logger.warning(f"dataset {dataset_name} has no column {image_column}")
|
| 81 |
+
|
| 82 |
+
if args.caption_column is None:
|
| 83 |
+
args.caption_column = column_names[1]
|
| 84 |
+
logger.info(f"caption column defaulting to {column_names[1]}")
|
| 85 |
+
else:
|
| 86 |
+
caption_column = args.caption_column
|
| 87 |
+
if caption_column not in column_names:
|
| 88 |
+
logger.warning(f"dataset {dataset_name} has no column {caption_column}")
|
| 89 |
+
|
| 90 |
+
if args.conditioning_image_column is None:
|
| 91 |
+
args.conditioning_image_column = column_names[2]
|
| 92 |
+
logger.info(f"conditioning image column defaulting to {column_names[2]}")
|
| 93 |
+
else:
|
| 94 |
+
conditioning_image_column = args.conditioning_image_column
|
| 95 |
+
if conditioning_image_column not in column_names:
|
| 96 |
+
logger.warning(f"dataset {dataset_name} has no column {conditioning_image_column}")
|
| 97 |
+
|
| 98 |
+
with accelerator.main_process_first():
|
| 99 |
+
train_dataset = dataset.shuffle(seed=args.seed)
|
| 100 |
+
if args.max_train_samples is not None:
|
| 101 |
+
train_dataset = train_dataset.select(range(args.max_train_samples))
|
| 102 |
+
return train_dataset
|
| 103 |
+
|
| 104 |
+
def prepare_train_dataset(dataset, accelerator, deg_pipeline, centralize=False):
|
| 105 |
+
|
| 106 |
+
# Data augmentations.
|
| 107 |
+
hflip = deg_pipeline.augment_opt['use_hflip'] and random.random() < 0.5
|
| 108 |
+
vflip = deg_pipeline.augment_opt['use_rot'] and random.random() < 0.5
|
| 109 |
+
rot90 = deg_pipeline.augment_opt['use_rot'] and random.random() < 0.5
|
| 110 |
+
augment_transforms = []
|
| 111 |
+
if hflip:
|
| 112 |
+
augment_transforms.append(transforms.RandomHorizontalFlip(p=1.0))
|
| 113 |
+
if vflip:
|
| 114 |
+
augment_transforms.append(transforms.RandomVerticalFlip(p=1.0))
|
| 115 |
+
if rot90:
|
| 116 |
+
# FIXME
|
| 117 |
+
augment_transforms.append(transforms.RandomRotation(degrees=(90,90)))
|
| 118 |
+
torch_transforms=[transforms.ToTensor()]
|
| 119 |
+
if centralize:
|
| 120 |
+
# to [-1, 1]
|
| 121 |
+
torch_transforms.append(transforms.Normalize([0.5], [0.5]))
|
| 122 |
+
|
| 123 |
+
training_size = deg_pipeline.degrade_opt['gt_size']
|
| 124 |
+
image_transforms = transforms.Compose(augment_transforms)
|
| 125 |
+
train_transforms = transforms.Compose(torch_transforms)
|
| 126 |
+
train_resize = transforms.Resize(training_size, interpolation=transforms.InterpolationMode.BILINEAR)
|
| 127 |
+
train_crop = transforms.RandomCrop(training_size)
|
| 128 |
+
|
| 129 |
+
def preprocess_train(examples):
|
| 130 |
+
raw_images = []
|
| 131 |
+
for img_data in examples[args.image_column]:
|
| 132 |
+
raw_images.append(Image.open(img_data).convert("RGB"))
|
| 133 |
+
|
| 134 |
+
# Image stack.
|
| 135 |
+
images = []
|
| 136 |
+
original_sizes = []
|
| 137 |
+
crop_top_lefts = []
|
| 138 |
+
# Degradation kernels stack.
|
| 139 |
+
kernel = []
|
| 140 |
+
kernel2 = []
|
| 141 |
+
sinc_kernel = []
|
| 142 |
+
|
| 143 |
+
for raw_image in raw_images:
|
| 144 |
+
raw_image = image_transforms(raw_image)
|
| 145 |
+
original_sizes.append((raw_image.height, raw_image.width))
|
| 146 |
+
|
| 147 |
+
# Resize smaller edge.
|
| 148 |
+
raw_image = train_resize(raw_image)
|
| 149 |
+
# Crop to training size.
|
| 150 |
+
y1, x1, h, w = train_crop.get_params(raw_image, (training_size, training_size))
|
| 151 |
+
raw_image = crop(raw_image, y1, x1, h, w)
|
| 152 |
+
crop_top_left = (y1, x1)
|
| 153 |
+
crop_top_lefts.append(crop_top_left)
|
| 154 |
+
image = train_transforms(raw_image)
|
| 155 |
+
|
| 156 |
+
images.append(image)
|
| 157 |
+
k, k2, sk = deg_pipeline.get_kernel()
|
| 158 |
+
kernel.append(k)
|
| 159 |
+
kernel2.append(k2)
|
| 160 |
+
sinc_kernel.append(sk)
|
| 161 |
+
|
| 162 |
+
examples["images"] = images
|
| 163 |
+
examples["original_sizes"] = original_sizes
|
| 164 |
+
examples["crop_top_lefts"] = crop_top_lefts
|
| 165 |
+
examples["kernel"] = kernel
|
| 166 |
+
examples["kernel2"] = kernel2
|
| 167 |
+
examples["sinc_kernel"] = sinc_kernel
|
| 168 |
+
|
| 169 |
+
return examples
|
| 170 |
+
|
| 171 |
+
with accelerator.main_process_first():
|
| 172 |
+
dataset = dataset.with_transform(preprocess_train)
|
| 173 |
+
|
| 174 |
+
return dataset
|
| 175 |
+
|
| 176 |
+
def collate_fn(examples):
|
| 177 |
+
images = torch.stack([example["images"] for example in examples])
|
| 178 |
+
images = images.to(memory_format=torch.contiguous_format).float()
|
| 179 |
+
kernel = torch.stack([example["kernel"] for example in examples])
|
| 180 |
+
kernel = kernel.to(memory_format=torch.contiguous_format).float()
|
| 181 |
+
kernel2 = torch.stack([example["kernel2"] for example in examples])
|
| 182 |
+
kernel2 = kernel2.to(memory_format=torch.contiguous_format).float()
|
| 183 |
+
sinc_kernel = torch.stack([example["sinc_kernel"] for example in examples])
|
| 184 |
+
sinc_kernel = sinc_kernel.to(memory_format=torch.contiguous_format).float()
|
| 185 |
+
original_sizes = [example["original_sizes"] for example in examples]
|
| 186 |
+
crop_top_lefts = [example["crop_top_lefts"] for example in examples]
|
| 187 |
+
|
| 188 |
+
prompts = []
|
| 189 |
+
for example in examples:
|
| 190 |
+
prompts.append(example[args.caption_column]) if args.caption_column in example else prompts.append("")
|
| 191 |
+
|
| 192 |
+
return {
|
| 193 |
+
"images": images,
|
| 194 |
+
"text": prompts,
|
| 195 |
+
"kernel": kernel,
|
| 196 |
+
"kernel2": kernel2,
|
| 197 |
+
"sinc_kernel": sinc_kernel,
|
| 198 |
+
"original_sizes": original_sizes,
|
| 199 |
+
"crop_top_lefts": crop_top_lefts,
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
def encode_prompt(prompt_batch, text_encoders, tokenizers, is_train=True):
|
| 203 |
+
prompt_embeds_list = []
|
| 204 |
+
|
| 205 |
+
captions = []
|
| 206 |
+
for caption in prompt_batch:
|
| 207 |
+
if isinstance(caption, str):
|
| 208 |
+
captions.append(caption)
|
| 209 |
+
elif isinstance(caption, (list, np.ndarray)):
|
| 210 |
+
# take a random caption if there are multiple
|
| 211 |
+
captions.append(random.choice(caption) if is_train else caption[0])
|
| 212 |
+
|
| 213 |
+
with torch.no_grad():
|
| 214 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
| 215 |
+
text_inputs = tokenizer(
|
| 216 |
+
captions,
|
| 217 |
+
padding="max_length",
|
| 218 |
+
max_length=tokenizer.model_max_length,
|
| 219 |
+
truncation=True,
|
| 220 |
+
return_tensors="pt",
|
| 221 |
+
)
|
| 222 |
+
text_input_ids = text_inputs.input_ids
|
| 223 |
+
prompt_embeds = text_encoder(
|
| 224 |
+
text_input_ids.to(text_encoder.device),
|
| 225 |
+
output_hidden_states=True,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
| 229 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 230 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 231 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 232 |
+
prompt_embeds_list.append(prompt_embeds)
|
| 233 |
+
|
| 234 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
| 235 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
| 236 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
| 237 |
+
return prompt_embeds, pooled_prompt_embeds
|
| 238 |
+
|
| 239 |
+
def importance_sampling_fn(t, max_t, alpha):
|
| 240 |
+
"""Importance Sampling Function f(t)"""
|
| 241 |
+
return 1 / max_t * (1 - alpha * np.cos(np.pi * t / max_t))
|
| 242 |
+
|
| 243 |
+
def extract_into_tensor(a, t, x_shape):
|
| 244 |
+
b, *_ = t.shape
|
| 245 |
+
out = a.gather(-1, t)
|
| 246 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
| 247 |
+
|
| 248 |
+
def tensor_to_pil(images):
|
| 249 |
+
"""
|
| 250 |
+
Convert image tensor or a batch of image tensors to PIL image(s).
|
| 251 |
+
"""
|
| 252 |
+
images = (images + 1) / 2
|
| 253 |
+
images_np = images.detach().cpu().numpy()
|
| 254 |
+
if images_np.ndim == 4:
|
| 255 |
+
images_np = np.transpose(images_np, (0, 2, 3, 1))
|
| 256 |
+
elif images_np.ndim == 3:
|
| 257 |
+
images_np = np.transpose(images_np, (1, 2, 0))
|
| 258 |
+
images_np = images_np[None, ...]
|
| 259 |
+
images_np = (images_np * 255).round().astype("uint8")
|
| 260 |
+
if images_np.shape[-1] == 1:
|
| 261 |
+
# special case for grayscale (single channel) images
|
| 262 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images_np]
|
| 263 |
+
else:
|
| 264 |
+
pil_images = [Image.fromarray(image[:, :, :3]) for image in images_np]
|
| 265 |
+
|
| 266 |
+
return pil_images
|
| 267 |
+
|
| 268 |
+
def save_np_to_image(img_np, save_dir):
|
| 269 |
+
img_np = np.transpose(img_np, (0, 2, 3, 1))
|
| 270 |
+
img_np = (img_np * 255).astype(np.uint8)
|
| 271 |
+
img_np = Image.fromarray(img_np[0])
|
| 272 |
+
img_np.save(save_dir)
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def seperate_SFT_params_from_unet(unet):
|
| 276 |
+
params = []
|
| 277 |
+
non_params = []
|
| 278 |
+
for name, param in unet.named_parameters():
|
| 279 |
+
if "SFT" in name:
|
| 280 |
+
params.append(param)
|
| 281 |
+
else:
|
| 282 |
+
non_params.append(param)
|
| 283 |
+
return params, non_params
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def seperate_lora_params_from_unet(unet):
|
| 287 |
+
keys = []
|
| 288 |
+
frozen_keys = []
|
| 289 |
+
for name, param in unet.named_parameters():
|
| 290 |
+
if "lora" in name:
|
| 291 |
+
keys.append(param)
|
| 292 |
+
else:
|
| 293 |
+
frozen_keys.append(param)
|
| 294 |
+
return keys, frozen_keys
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def seperate_ip_params_from_unet(unet):
|
| 298 |
+
ip_params = []
|
| 299 |
+
non_ip_params = []
|
| 300 |
+
for name, param in unet.named_parameters():
|
| 301 |
+
if "encoder_hid_proj." in name or "_ip." in name:
|
| 302 |
+
ip_params.append(param)
|
| 303 |
+
elif "attn" in name and "processor" in name:
|
| 304 |
+
if "ip" in name or "ln" in name:
|
| 305 |
+
ip_params.append(param)
|
| 306 |
+
else:
|
| 307 |
+
non_ip_params.append(param)
|
| 308 |
+
return ip_params, non_ip_params
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def seperate_ref_params_from_unet(unet):
|
| 312 |
+
ip_params = []
|
| 313 |
+
non_ip_params = []
|
| 314 |
+
for name, param in unet.named_parameters():
|
| 315 |
+
if "encoder_hid_proj." in name or "_ip." in name:
|
| 316 |
+
ip_params.append(param)
|
| 317 |
+
elif "attn" in name and "processor" in name:
|
| 318 |
+
if "ip" in name or "ln" in name:
|
| 319 |
+
ip_params.append(param)
|
| 320 |
+
elif "extract" in name:
|
| 321 |
+
ip_params.append(param)
|
| 322 |
+
else:
|
| 323 |
+
non_ip_params.append(param)
|
| 324 |
+
return ip_params, non_ip_params
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
def seperate_ip_modules_from_unet(unet):
|
| 328 |
+
ip_modules = []
|
| 329 |
+
non_ip_modules = []
|
| 330 |
+
for name, module in unet.named_modules():
|
| 331 |
+
if "encoder_hid_proj" in name or "attn2.processor" in name:
|
| 332 |
+
ip_modules.append(module)
|
| 333 |
+
else:
|
| 334 |
+
non_ip_modules.append(module)
|
| 335 |
+
return ip_modules, non_ip_modules
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
def seperate_SFT_keys_from_unet(unet):
|
| 339 |
+
keys = []
|
| 340 |
+
non_keys = []
|
| 341 |
+
for name, param in unet.named_parameters():
|
| 342 |
+
if "SFT" in name:
|
| 343 |
+
keys.append(name)
|
| 344 |
+
else:
|
| 345 |
+
non_keys.append(name)
|
| 346 |
+
return keys, non_keys
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def seperate_ip_keys_from_unet(unet):
|
| 350 |
+
keys = []
|
| 351 |
+
non_keys = []
|
| 352 |
+
for name, param in unet.named_parameters():
|
| 353 |
+
if "encoder_hid_proj." in name or "_ip." in name:
|
| 354 |
+
keys.append(name)
|
| 355 |
+
elif "attn" in name and "processor" in name:
|
| 356 |
+
if "ip" in name or "ln" in name:
|
| 357 |
+
keys.append(name)
|
| 358 |
+
else:
|
| 359 |
+
non_keys.append(name)
|
| 360 |
+
return keys, non_keys
|