Spaces:
Configuration error
Configuration error
Create aggregator.py
Browse files- module/aggregator.py +973 -0
module/aggregator.py
ADDED
|
@@ -0,0 +1,973 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 9 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
| 10 |
+
from diffusers.utils import BaseOutput, logging
|
| 11 |
+
from diffusers.models.attention_processor import (
|
| 12 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 13 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 14 |
+
AttentionProcessor,
|
| 15 |
+
AttnAddedKVProcessor,
|
| 16 |
+
AttnProcessor,
|
| 17 |
+
)
|
| 18 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
| 19 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 20 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
| 21 |
+
CrossAttnDownBlock2D,
|
| 22 |
+
DownBlock2D,
|
| 23 |
+
UNetMidBlock2D,
|
| 24 |
+
UNetMidBlock2DCrossAttn,
|
| 25 |
+
get_down_block,
|
| 26 |
+
)
|
| 27 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class ZeroConv(nn.Module):
|
| 34 |
+
def __init__(self, label_nc, norm_nc, mask=False):
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.zero_conv = zero_module(nn.Conv2d(label_nc+norm_nc, norm_nc, 1, 1, 0))
|
| 37 |
+
self.mask = mask
|
| 38 |
+
|
| 39 |
+
def forward(self, hidden_states, h_ori=None):
|
| 40 |
+
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
|
| 41 |
+
c, h = hidden_states
|
| 42 |
+
if not self.mask:
|
| 43 |
+
h = self.zero_conv(torch.cat([c, h], dim=1))
|
| 44 |
+
else:
|
| 45 |
+
h = self.zero_conv(torch.cat([c, h], dim=1)) * torch.zeros_like(h)
|
| 46 |
+
if h_ori is not None:
|
| 47 |
+
h = torch.cat([h_ori, h], dim=1)
|
| 48 |
+
return h
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class SFT(nn.Module):
|
| 52 |
+
def __init__(self, label_nc, norm_nc, mask=False):
|
| 53 |
+
super().__init__()
|
| 54 |
+
|
| 55 |
+
# param_free_norm_type = str(parsed.group(1))
|
| 56 |
+
ks = 3
|
| 57 |
+
pw = ks // 2
|
| 58 |
+
|
| 59 |
+
self.mask = mask
|
| 60 |
+
|
| 61 |
+
nhidden = 128
|
| 62 |
+
|
| 63 |
+
self.mlp_shared = nn.Sequential(
|
| 64 |
+
nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
|
| 65 |
+
nn.SiLU()
|
| 66 |
+
)
|
| 67 |
+
self.mul = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
|
| 68 |
+
self.add = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
|
| 69 |
+
|
| 70 |
+
def forward(self, hidden_states, mask=False):
|
| 71 |
+
|
| 72 |
+
c, h = hidden_states
|
| 73 |
+
mask = mask or self.mask
|
| 74 |
+
assert mask is False
|
| 75 |
+
|
| 76 |
+
actv = self.mlp_shared(c)
|
| 77 |
+
gamma = self.mul(actv)
|
| 78 |
+
beta = self.add(actv)
|
| 79 |
+
|
| 80 |
+
if self.mask:
|
| 81 |
+
gamma = gamma * torch.zeros_like(gamma)
|
| 82 |
+
beta = beta * torch.zeros_like(beta)
|
| 83 |
+
# gamma_ori, gamma_res = torch.split(gamma, [h_ori_c, h_c], dim=1)
|
| 84 |
+
# beta_ori, beta_res = torch.split(beta, [h_ori_c, h_c], dim=1)
|
| 85 |
+
# print(gamma_ori.mean(), gamma_res.mean(), beta_ori.mean(), beta_res.mean())
|
| 86 |
+
h = h * (gamma + 1) + beta
|
| 87 |
+
# sample_ori, sample_res = torch.split(h, [h_ori_c, h_c], dim=1)
|
| 88 |
+
# print(sample_ori.mean(), sample_res.mean())
|
| 89 |
+
|
| 90 |
+
return h
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@dataclass
|
| 94 |
+
class AggregatorOutput(BaseOutput):
|
| 95 |
+
"""
|
| 96 |
+
The output of [`Aggregator`].
|
| 97 |
+
Args:
|
| 98 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
| 99 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
| 100 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
| 101 |
+
used to condition the original UNet's downsampling activations.
|
| 102 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
| 103 |
+
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
| 104 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
| 105 |
+
Output can be used to condition the original UNet's middle block activation.
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
| 109 |
+
mid_block_res_sample: torch.Tensor
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class ConditioningEmbedding(nn.Module):
|
| 113 |
+
"""
|
| 114 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
| 115 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
| 116 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
| 117 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
| 118 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
| 119 |
+
model) to encode image-space conditions ... into feature maps ..."
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
def __init__(
|
| 123 |
+
self,
|
| 124 |
+
conditioning_embedding_channels: int,
|
| 125 |
+
conditioning_channels: int = 3,
|
| 126 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
| 127 |
+
):
|
| 128 |
+
super().__init__()
|
| 129 |
+
|
| 130 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
| 131 |
+
|
| 132 |
+
self.blocks = nn.ModuleList([])
|
| 133 |
+
|
| 134 |
+
for i in range(len(block_out_channels) - 1):
|
| 135 |
+
channel_in = block_out_channels[i]
|
| 136 |
+
channel_out = block_out_channels[i + 1]
|
| 137 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
| 138 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
| 139 |
+
|
| 140 |
+
self.conv_out = zero_module(
|
| 141 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
def forward(self, conditioning):
|
| 145 |
+
embedding = self.conv_in(conditioning)
|
| 146 |
+
embedding = F.silu(embedding)
|
| 147 |
+
|
| 148 |
+
for block in self.blocks:
|
| 149 |
+
embedding = block(embedding)
|
| 150 |
+
embedding = F.silu(embedding)
|
| 151 |
+
|
| 152 |
+
embedding = self.conv_out(embedding)
|
| 153 |
+
|
| 154 |
+
return embedding
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class Aggregator(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 158 |
+
"""
|
| 159 |
+
Aggregator model.
|
| 160 |
+
Args:
|
| 161 |
+
in_channels (`int`, defaults to 4):
|
| 162 |
+
The number of channels in the input sample.
|
| 163 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
| 164 |
+
Whether to flip the sin to cos in the time embedding.
|
| 165 |
+
freq_shift (`int`, defaults to 0):
|
| 166 |
+
The frequency shift to apply to the time embedding.
|
| 167 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 168 |
+
The tuple of downsample blocks to use.
|
| 169 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
| 170 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
| 171 |
+
The tuple of output channels for each block.
|
| 172 |
+
layers_per_block (`int`, defaults to 2):
|
| 173 |
+
The number of layers per block.
|
| 174 |
+
downsample_padding (`int`, defaults to 1):
|
| 175 |
+
The padding to use for the downsampling convolution.
|
| 176 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
| 177 |
+
The scale factor to use for the mid block.
|
| 178 |
+
act_fn (`str`, defaults to "silu"):
|
| 179 |
+
The activation function to use.
|
| 180 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 181 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
| 182 |
+
in post-processing.
|
| 183 |
+
norm_eps (`float`, defaults to 1e-5):
|
| 184 |
+
The epsilon to use for the normalization.
|
| 185 |
+
cross_attention_dim (`int`, defaults to 1280):
|
| 186 |
+
The dimension of the cross attention features.
|
| 187 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
| 188 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 189 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 190 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 191 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
| 192 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
| 193 |
+
dimension to `cross_attention_dim`.
|
| 194 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
| 195 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
| 196 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
| 197 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
| 198 |
+
The dimension of the attention heads.
|
| 199 |
+
use_linear_projection (`bool`, defaults to `False`):
|
| 200 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 201 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
| 202 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
| 203 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
| 204 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
| 205 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
| 206 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
| 207 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
| 208 |
+
class conditioning with `class_embed_type` equal to `None`.
|
| 209 |
+
upcast_attention (`bool`, defaults to `False`):
|
| 210 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
| 211 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
| 212 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
| 213 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
| 214 |
+
`class_embed_type="projection"`.
|
| 215 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
| 216 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
| 217 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
| 218 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
| 219 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
| 220 |
+
TODO(Patrick) - unused parameter.
|
| 221 |
+
addition_embed_type_num_heads (`int`, defaults to 64):
|
| 222 |
+
The number of heads to use for the `TextTimeEmbedding` layer.
|
| 223 |
+
"""
|
| 224 |
+
|
| 225 |
+
_supports_gradient_checkpointing = True
|
| 226 |
+
|
| 227 |
+
@register_to_config
|
| 228 |
+
def __init__(
|
| 229 |
+
self,
|
| 230 |
+
in_channels: int = 4,
|
| 231 |
+
conditioning_channels: int = 3,
|
| 232 |
+
flip_sin_to_cos: bool = True,
|
| 233 |
+
freq_shift: int = 0,
|
| 234 |
+
down_block_types: Tuple[str, ...] = (
|
| 235 |
+
"CrossAttnDownBlock2D",
|
| 236 |
+
"CrossAttnDownBlock2D",
|
| 237 |
+
"CrossAttnDownBlock2D",
|
| 238 |
+
"DownBlock2D",
|
| 239 |
+
),
|
| 240 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 241 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 242 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
| 243 |
+
layers_per_block: int = 2,
|
| 244 |
+
downsample_padding: int = 1,
|
| 245 |
+
mid_block_scale_factor: float = 1,
|
| 246 |
+
act_fn: str = "silu",
|
| 247 |
+
norm_num_groups: Optional[int] = 32,
|
| 248 |
+
norm_eps: float = 1e-5,
|
| 249 |
+
cross_attention_dim: int = 1280,
|
| 250 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
| 251 |
+
encoder_hid_dim: Optional[int] = None,
|
| 252 |
+
encoder_hid_dim_type: Optional[str] = None,
|
| 253 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
| 254 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
| 255 |
+
use_linear_projection: bool = False,
|
| 256 |
+
class_embed_type: Optional[str] = None,
|
| 257 |
+
addition_embed_type: Optional[str] = None,
|
| 258 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 259 |
+
num_class_embeds: Optional[int] = None,
|
| 260 |
+
upcast_attention: bool = False,
|
| 261 |
+
resnet_time_scale_shift: str = "default",
|
| 262 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 263 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 264 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
| 265 |
+
global_pool_conditions: bool = False,
|
| 266 |
+
addition_embed_type_num_heads: int = 64,
|
| 267 |
+
pad_concat: bool = False,
|
| 268 |
+
):
|
| 269 |
+
super().__init__()
|
| 270 |
+
|
| 271 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 272 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 273 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 274 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 275 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 276 |
+
# which is why we correct for the naming here.
|
| 277 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 278 |
+
self.pad_concat = pad_concat
|
| 279 |
+
|
| 280 |
+
# Check inputs
|
| 281 |
+
if len(block_out_channels) != len(down_block_types):
|
| 282 |
+
raise ValueError(
|
| 283 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
| 287 |
+
raise ValueError(
|
| 288 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
| 292 |
+
raise ValueError(
|
| 293 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
if isinstance(transformer_layers_per_block, int):
|
| 297 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 298 |
+
|
| 299 |
+
# input
|
| 300 |
+
conv_in_kernel = 3
|
| 301 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 302 |
+
self.conv_in = nn.Conv2d(
|
| 303 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
# time
|
| 307 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 308 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 309 |
+
timestep_input_dim = block_out_channels[0]
|
| 310 |
+
self.time_embedding = TimestepEmbedding(
|
| 311 |
+
timestep_input_dim,
|
| 312 |
+
time_embed_dim,
|
| 313 |
+
act_fn=act_fn,
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
| 317 |
+
encoder_hid_dim_type = "text_proj"
|
| 318 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
| 319 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
| 320 |
+
|
| 321 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
| 322 |
+
raise ValueError(
|
| 323 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
if encoder_hid_dim_type == "text_proj":
|
| 327 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
| 328 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
| 329 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 330 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 331 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
| 332 |
+
self.encoder_hid_proj = TextImageProjection(
|
| 333 |
+
text_embed_dim=encoder_hid_dim,
|
| 334 |
+
image_embed_dim=cross_attention_dim,
|
| 335 |
+
cross_attention_dim=cross_attention_dim,
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
elif encoder_hid_dim_type is not None:
|
| 339 |
+
raise ValueError(
|
| 340 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
| 341 |
+
)
|
| 342 |
+
else:
|
| 343 |
+
self.encoder_hid_proj = None
|
| 344 |
+
|
| 345 |
+
# class embedding
|
| 346 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 347 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 348 |
+
elif class_embed_type == "timestep":
|
| 349 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 350 |
+
elif class_embed_type == "identity":
|
| 351 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 352 |
+
elif class_embed_type == "projection":
|
| 353 |
+
if projection_class_embeddings_input_dim is None:
|
| 354 |
+
raise ValueError(
|
| 355 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
| 356 |
+
)
|
| 357 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
| 358 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
| 359 |
+
# 2. it projects from an arbitrary input dimension.
|
| 360 |
+
#
|
| 361 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
| 362 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
| 363 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
| 364 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 365 |
+
else:
|
| 366 |
+
self.class_embedding = None
|
| 367 |
+
|
| 368 |
+
if addition_embed_type == "text":
|
| 369 |
+
if encoder_hid_dim is not None:
|
| 370 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
| 371 |
+
else:
|
| 372 |
+
text_time_embedding_from_dim = cross_attention_dim
|
| 373 |
+
|
| 374 |
+
self.add_embedding = TextTimeEmbedding(
|
| 375 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
| 376 |
+
)
|
| 377 |
+
elif addition_embed_type == "text_image":
|
| 378 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 379 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 380 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
| 381 |
+
self.add_embedding = TextImageTimeEmbedding(
|
| 382 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
| 383 |
+
)
|
| 384 |
+
elif addition_embed_type == "text_time":
|
| 385 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
| 386 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 387 |
+
|
| 388 |
+
elif addition_embed_type is not None:
|
| 389 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
| 390 |
+
|
| 391 |
+
# control net conditioning embedding
|
| 392 |
+
self.ref_conv_in = nn.Conv2d(
|
| 393 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
self.down_blocks = nn.ModuleList([])
|
| 397 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
| 398 |
+
|
| 399 |
+
if isinstance(only_cross_attention, bool):
|
| 400 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 401 |
+
|
| 402 |
+
if isinstance(attention_head_dim, int):
|
| 403 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 404 |
+
|
| 405 |
+
if isinstance(num_attention_heads, int):
|
| 406 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 407 |
+
|
| 408 |
+
# down
|
| 409 |
+
output_channel = block_out_channels[0]
|
| 410 |
+
|
| 411 |
+
# controlnet_block = ZeroConv(output_channel, output_channel)
|
| 412 |
+
controlnet_block = nn.Sequential(
|
| 413 |
+
SFT(output_channel, output_channel),
|
| 414 |
+
zero_module(nn.Conv2d(output_channel, output_channel, kernel_size=1))
|
| 415 |
+
)
|
| 416 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 417 |
+
|
| 418 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 419 |
+
input_channel = output_channel
|
| 420 |
+
output_channel = block_out_channels[i]
|
| 421 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 422 |
+
|
| 423 |
+
down_block = get_down_block(
|
| 424 |
+
down_block_type,
|
| 425 |
+
num_layers=layers_per_block,
|
| 426 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 427 |
+
in_channels=input_channel,
|
| 428 |
+
out_channels=output_channel,
|
| 429 |
+
temb_channels=time_embed_dim,
|
| 430 |
+
add_downsample=not is_final_block,
|
| 431 |
+
resnet_eps=norm_eps,
|
| 432 |
+
resnet_act_fn=act_fn,
|
| 433 |
+
resnet_groups=norm_num_groups,
|
| 434 |
+
cross_attention_dim=cross_attention_dim,
|
| 435 |
+
num_attention_heads=num_attention_heads[i],
|
| 436 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 437 |
+
downsample_padding=downsample_padding,
|
| 438 |
+
use_linear_projection=use_linear_projection,
|
| 439 |
+
only_cross_attention=only_cross_attention[i],
|
| 440 |
+
upcast_attention=upcast_attention,
|
| 441 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 442 |
+
)
|
| 443 |
+
self.down_blocks.append(down_block)
|
| 444 |
+
|
| 445 |
+
for _ in range(layers_per_block):
|
| 446 |
+
# controlnet_block = ZeroConv(output_channel, output_channel)
|
| 447 |
+
controlnet_block = nn.Sequential(
|
| 448 |
+
SFT(output_channel, output_channel),
|
| 449 |
+
zero_module(nn.Conv2d(output_channel, output_channel, kernel_size=1))
|
| 450 |
+
)
|
| 451 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 452 |
+
|
| 453 |
+
if not is_final_block:
|
| 454 |
+
# controlnet_block = ZeroConv(output_channel, output_channel)
|
| 455 |
+
controlnet_block = nn.Sequential(
|
| 456 |
+
SFT(output_channel, output_channel),
|
| 457 |
+
zero_module(nn.Conv2d(output_channel, output_channel, kernel_size=1))
|
| 458 |
+
)
|
| 459 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 460 |
+
|
| 461 |
+
# mid
|
| 462 |
+
mid_block_channel = block_out_channels[-1]
|
| 463 |
+
|
| 464 |
+
# controlnet_block = ZeroConv(mid_block_channel, mid_block_channel)
|
| 465 |
+
controlnet_block = nn.Sequential(
|
| 466 |
+
SFT(mid_block_channel, mid_block_channel),
|
| 467 |
+
zero_module(nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1))
|
| 468 |
+
)
|
| 469 |
+
self.controlnet_mid_block = controlnet_block
|
| 470 |
+
|
| 471 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
| 472 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 473 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 474 |
+
in_channels=mid_block_channel,
|
| 475 |
+
temb_channels=time_embed_dim,
|
| 476 |
+
resnet_eps=norm_eps,
|
| 477 |
+
resnet_act_fn=act_fn,
|
| 478 |
+
output_scale_factor=mid_block_scale_factor,
|
| 479 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 480 |
+
cross_attention_dim=cross_attention_dim,
|
| 481 |
+
num_attention_heads=num_attention_heads[-1],
|
| 482 |
+
resnet_groups=norm_num_groups,
|
| 483 |
+
use_linear_projection=use_linear_projection,
|
| 484 |
+
upcast_attention=upcast_attention,
|
| 485 |
+
)
|
| 486 |
+
elif mid_block_type == "UNetMidBlock2D":
|
| 487 |
+
self.mid_block = UNetMidBlock2D(
|
| 488 |
+
in_channels=block_out_channels[-1],
|
| 489 |
+
temb_channels=time_embed_dim,
|
| 490 |
+
num_layers=0,
|
| 491 |
+
resnet_eps=norm_eps,
|
| 492 |
+
resnet_act_fn=act_fn,
|
| 493 |
+
output_scale_factor=mid_block_scale_factor,
|
| 494 |
+
resnet_groups=norm_num_groups,
|
| 495 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 496 |
+
add_attention=False,
|
| 497 |
+
)
|
| 498 |
+
else:
|
| 499 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 500 |
+
|
| 501 |
+
@classmethod
|
| 502 |
+
def from_unet(
|
| 503 |
+
cls,
|
| 504 |
+
unet: UNet2DConditionModel,
|
| 505 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 506 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
| 507 |
+
load_weights_from_unet: bool = True,
|
| 508 |
+
conditioning_channels: int = 3,
|
| 509 |
+
):
|
| 510 |
+
r"""
|
| 511 |
+
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
| 512 |
+
Parameters:
|
| 513 |
+
unet (`UNet2DConditionModel`):
|
| 514 |
+
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
| 515 |
+
where applicable.
|
| 516 |
+
"""
|
| 517 |
+
transformer_layers_per_block = (
|
| 518 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
| 519 |
+
)
|
| 520 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
| 521 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
| 522 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
| 523 |
+
addition_time_embed_dim = (
|
| 524 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
controlnet = cls(
|
| 528 |
+
encoder_hid_dim=encoder_hid_dim,
|
| 529 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
| 530 |
+
addition_embed_type=addition_embed_type,
|
| 531 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
| 532 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 533 |
+
in_channels=unet.config.in_channels,
|
| 534 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
| 535 |
+
freq_shift=unet.config.freq_shift,
|
| 536 |
+
down_block_types=unet.config.down_block_types,
|
| 537 |
+
only_cross_attention=unet.config.only_cross_attention,
|
| 538 |
+
block_out_channels=unet.config.block_out_channels,
|
| 539 |
+
layers_per_block=unet.config.layers_per_block,
|
| 540 |
+
downsample_padding=unet.config.downsample_padding,
|
| 541 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
| 542 |
+
act_fn=unet.config.act_fn,
|
| 543 |
+
norm_num_groups=unet.config.norm_num_groups,
|
| 544 |
+
norm_eps=unet.config.norm_eps,
|
| 545 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
| 546 |
+
attention_head_dim=unet.config.attention_head_dim,
|
| 547 |
+
num_attention_heads=unet.config.num_attention_heads,
|
| 548 |
+
use_linear_projection=unet.config.use_linear_projection,
|
| 549 |
+
class_embed_type=unet.config.class_embed_type,
|
| 550 |
+
num_class_embeds=unet.config.num_class_embeds,
|
| 551 |
+
upcast_attention=unet.config.upcast_attention,
|
| 552 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
| 553 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
| 554 |
+
mid_block_type=unet.config.mid_block_type,
|
| 555 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
| 556 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
| 557 |
+
conditioning_channels=conditioning_channels,
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
if load_weights_from_unet:
|
| 561 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
| 562 |
+
controlnet.ref_conv_in.load_state_dict(unet.conv_in.state_dict())
|
| 563 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
| 564 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
| 565 |
+
|
| 566 |
+
if controlnet.class_embedding:
|
| 567 |
+
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
| 568 |
+
|
| 569 |
+
if hasattr(controlnet, "add_embedding"):
|
| 570 |
+
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
|
| 571 |
+
|
| 572 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
| 573 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
| 574 |
+
|
| 575 |
+
return controlnet
|
| 576 |
+
|
| 577 |
+
@property
|
| 578 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 579 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 580 |
+
r"""
|
| 581 |
+
Returns:
|
| 582 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 583 |
+
indexed by its weight name.
|
| 584 |
+
"""
|
| 585 |
+
# set recursively
|
| 586 |
+
processors = {}
|
| 587 |
+
|
| 588 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 589 |
+
if hasattr(module, "get_processor"):
|
| 590 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
| 591 |
+
|
| 592 |
+
for sub_name, child in module.named_children():
|
| 593 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 594 |
+
|
| 595 |
+
return processors
|
| 596 |
+
|
| 597 |
+
for name, module in self.named_children():
|
| 598 |
+
fn_recursive_add_processors(name, module, processors)
|
| 599 |
+
|
| 600 |
+
return processors
|
| 601 |
+
|
| 602 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 603 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 604 |
+
r"""
|
| 605 |
+
Sets the attention processor to use to compute attention.
|
| 606 |
+
Parameters:
|
| 607 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 608 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 609 |
+
for **all** `Attention` layers.
|
| 610 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 611 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 612 |
+
"""
|
| 613 |
+
count = len(self.attn_processors.keys())
|
| 614 |
+
|
| 615 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 616 |
+
raise ValueError(
|
| 617 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 618 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 619 |
+
)
|
| 620 |
+
|
| 621 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 622 |
+
if hasattr(module, "set_processor"):
|
| 623 |
+
if not isinstance(processor, dict):
|
| 624 |
+
module.set_processor(processor)
|
| 625 |
+
else:
|
| 626 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 627 |
+
|
| 628 |
+
for sub_name, child in module.named_children():
|
| 629 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 630 |
+
|
| 631 |
+
for name, module in self.named_children():
|
| 632 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 633 |
+
|
| 634 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 635 |
+
def set_default_attn_processor(self):
|
| 636 |
+
"""
|
| 637 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 638 |
+
"""
|
| 639 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 640 |
+
processor = AttnAddedKVProcessor()
|
| 641 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 642 |
+
processor = AttnProcessor()
|
| 643 |
+
else:
|
| 644 |
+
raise ValueError(
|
| 645 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
self.set_attn_processor(processor)
|
| 649 |
+
|
| 650 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
| 651 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
| 652 |
+
r"""
|
| 653 |
+
Enable sliced attention computation.
|
| 654 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 655 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 656 |
+
Args:
|
| 657 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 658 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 659 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 660 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 661 |
+
must be a multiple of `slice_size`.
|
| 662 |
+
"""
|
| 663 |
+
sliceable_head_dims = []
|
| 664 |
+
|
| 665 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 666 |
+
if hasattr(module, "set_attention_slice"):
|
| 667 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 668 |
+
|
| 669 |
+
for child in module.children():
|
| 670 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 671 |
+
|
| 672 |
+
# retrieve number of attention layers
|
| 673 |
+
for module in self.children():
|
| 674 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 675 |
+
|
| 676 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 677 |
+
|
| 678 |
+
if slice_size == "auto":
|
| 679 |
+
# half the attention head size is usually a good trade-off between
|
| 680 |
+
# speed and memory
|
| 681 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 682 |
+
elif slice_size == "max":
|
| 683 |
+
# make smallest slice possible
|
| 684 |
+
slice_size = num_sliceable_layers * [1]
|
| 685 |
+
|
| 686 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
| 687 |
+
|
| 688 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 689 |
+
raise ValueError(
|
| 690 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 691 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
for i in range(len(slice_size)):
|
| 695 |
+
size = slice_size[i]
|
| 696 |
+
dim = sliceable_head_dims[i]
|
| 697 |
+
if size is not None and size > dim:
|
| 698 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 699 |
+
|
| 700 |
+
# Recursively walk through all the children.
|
| 701 |
+
# Any children which exposes the set_attention_slice method
|
| 702 |
+
# gets the message
|
| 703 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
| 704 |
+
if hasattr(module, "set_attention_slice"):
|
| 705 |
+
module.set_attention_slice(slice_size.pop())
|
| 706 |
+
|
| 707 |
+
for child in module.children():
|
| 708 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 709 |
+
|
| 710 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 711 |
+
for module in self.children():
|
| 712 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 713 |
+
|
| 714 |
+
def process_encoder_hidden_states(
|
| 715 |
+
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
| 716 |
+
) -> torch.Tensor:
|
| 717 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
| 718 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
| 719 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
| 720 |
+
# Kandinsky 2.1 - style
|
| 721 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 722 |
+
raise ValueError(
|
| 723 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 724 |
+
)
|
| 725 |
+
|
| 726 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 727 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
| 728 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
| 729 |
+
# Kandinsky 2.2 - style
|
| 730 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 731 |
+
raise ValueError(
|
| 732 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 733 |
+
)
|
| 734 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 735 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
| 736 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
| 737 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 738 |
+
raise ValueError(
|
| 739 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 740 |
+
)
|
| 741 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 742 |
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
| 743 |
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
| 744 |
+
return encoder_hidden_states
|
| 745 |
+
|
| 746 |
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
| 747 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
| 748 |
+
module.gradient_checkpointing = value
|
| 749 |
+
|
| 750 |
+
def forward(
|
| 751 |
+
self,
|
| 752 |
+
sample: torch.FloatTensor,
|
| 753 |
+
timestep: Union[torch.Tensor, float, int],
|
| 754 |
+
encoder_hidden_states: torch.Tensor,
|
| 755 |
+
controlnet_cond: torch.FloatTensor,
|
| 756 |
+
cat_dim: int = -2,
|
| 757 |
+
conditioning_scale: float = 1.0,
|
| 758 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 759 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 760 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 761 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 762 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 763 |
+
return_dict: bool = True,
|
| 764 |
+
) -> Union[AggregatorOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
|
| 765 |
+
"""
|
| 766 |
+
The [`Aggregator`] forward method.
|
| 767 |
+
Args:
|
| 768 |
+
sample (`torch.FloatTensor`):
|
| 769 |
+
The noisy input tensor.
|
| 770 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
| 771 |
+
The number of timesteps to denoise an input.
|
| 772 |
+
encoder_hidden_states (`torch.Tensor`):
|
| 773 |
+
The encoder hidden states.
|
| 774 |
+
controlnet_cond (`torch.FloatTensor`):
|
| 775 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 776 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 777 |
+
The scale factor for ControlNet outputs.
|
| 778 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
| 779 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 780 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
| 781 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
| 782 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
| 783 |
+
embeddings.
|
| 784 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
| 785 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 786 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 787 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 788 |
+
added_cond_kwargs (`dict`):
|
| 789 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
| 790 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
| 791 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
| 792 |
+
return_dict (`bool`, defaults to `True`):
|
| 793 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
| 794 |
+
Returns:
|
| 795 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
| 796 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
| 797 |
+
returned where the first element is the sample tensor.
|
| 798 |
+
"""
|
| 799 |
+
# check channel order
|
| 800 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
| 801 |
+
|
| 802 |
+
if channel_order == "rgb":
|
| 803 |
+
# in rgb order by default
|
| 804 |
+
...
|
| 805 |
+
else:
|
| 806 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
| 807 |
+
|
| 808 |
+
# prepare attention_mask
|
| 809 |
+
if attention_mask is not None:
|
| 810 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 811 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 812 |
+
|
| 813 |
+
# 1. time
|
| 814 |
+
timesteps = timestep
|
| 815 |
+
if not torch.is_tensor(timesteps):
|
| 816 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 817 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 818 |
+
is_mps = sample.device.type == "mps"
|
| 819 |
+
if isinstance(timestep, float):
|
| 820 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 821 |
+
else:
|
| 822 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 823 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 824 |
+
elif len(timesteps.shape) == 0:
|
| 825 |
+
timesteps = timesteps[None].to(sample.device)
|
| 826 |
+
|
| 827 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 828 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 829 |
+
|
| 830 |
+
t_emb = self.time_proj(timesteps)
|
| 831 |
+
|
| 832 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 833 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 834 |
+
# there might be better ways to encapsulate this.
|
| 835 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 836 |
+
|
| 837 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 838 |
+
aug_emb = None
|
| 839 |
+
|
| 840 |
+
if self.class_embedding is not None:
|
| 841 |
+
if class_labels is None:
|
| 842 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 843 |
+
|
| 844 |
+
if self.config.class_embed_type == "timestep":
|
| 845 |
+
class_labels = self.time_proj(class_labels)
|
| 846 |
+
|
| 847 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 848 |
+
emb = emb + class_emb
|
| 849 |
+
|
| 850 |
+
if self.config.addition_embed_type is not None:
|
| 851 |
+
if self.config.addition_embed_type == "text":
|
| 852 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 853 |
+
|
| 854 |
+
elif self.config.addition_embed_type == "text_time":
|
| 855 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 856 |
+
raise ValueError(
|
| 857 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 858 |
+
)
|
| 859 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 860 |
+
if "time_ids" not in added_cond_kwargs:
|
| 861 |
+
raise ValueError(
|
| 862 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 863 |
+
)
|
| 864 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 865 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 866 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 867 |
+
|
| 868 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 869 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 870 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 871 |
+
|
| 872 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 873 |
+
|
| 874 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
| 875 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
| 876 |
+
)
|
| 877 |
+
|
| 878 |
+
# 2. prepare input
|
| 879 |
+
cond_latent = self.conv_in(sample)
|
| 880 |
+
ref_latent = self.ref_conv_in(controlnet_cond)
|
| 881 |
+
batch_size, channel, height, width = cond_latent.shape
|
| 882 |
+
if self.pad_concat:
|
| 883 |
+
if cat_dim == -2 or cat_dim == 2:
|
| 884 |
+
concat_pad = torch.zeros(batch_size, channel, 1, width)
|
| 885 |
+
elif cat_dim == -1 or cat_dim == 3:
|
| 886 |
+
concat_pad = torch.zeros(batch_size, channel, height, 1)
|
| 887 |
+
else:
|
| 888 |
+
raise ValueError(f"Aggregator shall concat along spatial dimension, but is asked to concat dim: {cat_dim}.")
|
| 889 |
+
concat_pad = concat_pad.to(cond_latent.device, dtype=cond_latent.dtype)
|
| 890 |
+
sample = torch.cat([cond_latent, concat_pad, ref_latent], dim=cat_dim)
|
| 891 |
+
else:
|
| 892 |
+
sample = torch.cat([cond_latent, ref_latent], dim=cat_dim)
|
| 893 |
+
|
| 894 |
+
# 3. down
|
| 895 |
+
down_block_res_samples = (sample,)
|
| 896 |
+
for downsample_block in self.down_blocks:
|
| 897 |
+
sample, res_samples = downsample_block(
|
| 898 |
+
hidden_states=sample,
|
| 899 |
+
temb=emb,
|
| 900 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 901 |
+
)
|
| 902 |
+
|
| 903 |
+
# rebuild sample: split and concat
|
| 904 |
+
if self.pad_concat:
|
| 905 |
+
batch_size, channel, height, width = sample.shape
|
| 906 |
+
if cat_dim == -2 or cat_dim == 2:
|
| 907 |
+
cond_latent = sample[:, :, :height//2, :]
|
| 908 |
+
ref_latent = sample[:, :, -(height//2):, :]
|
| 909 |
+
concat_pad = torch.zeros(batch_size, channel, 1, width)
|
| 910 |
+
elif cat_dim == -1 or cat_dim == 3:
|
| 911 |
+
cond_latent = sample[:, :, :, :width//2]
|
| 912 |
+
ref_latent = sample[:, :, :, -(width//2):]
|
| 913 |
+
concat_pad = torch.zeros(batch_size, channel, height, 1)
|
| 914 |
+
concat_pad = concat_pad.to(cond_latent.device, dtype=cond_latent.dtype)
|
| 915 |
+
sample = torch.cat([cond_latent, concat_pad, ref_latent], dim=cat_dim)
|
| 916 |
+
res_samples = res_samples[:-1] + (sample,)
|
| 917 |
+
|
| 918 |
+
down_block_res_samples += res_samples
|
| 919 |
+
|
| 920 |
+
# 4. mid
|
| 921 |
+
if self.mid_block is not None:
|
| 922 |
+
sample = self.mid_block(
|
| 923 |
+
sample,
|
| 924 |
+
emb,
|
| 925 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 926 |
+
)
|
| 927 |
+
|
| 928 |
+
# 5. split samples and SFT.
|
| 929 |
+
controlnet_down_block_res_samples = ()
|
| 930 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
| 931 |
+
batch_size, channel, height, width = down_block_res_sample.shape
|
| 932 |
+
if cat_dim == -2 or cat_dim == 2:
|
| 933 |
+
cond_latent = down_block_res_sample[:, :, :height//2, :]
|
| 934 |
+
ref_latent = down_block_res_sample[:, :, -(height//2):, :]
|
| 935 |
+
elif cat_dim == -1 or cat_dim == 3:
|
| 936 |
+
cond_latent = down_block_res_sample[:, :, :, :width//2]
|
| 937 |
+
ref_latent = down_block_res_sample[:, :, :, -(width//2):]
|
| 938 |
+
down_block_res_sample = controlnet_block((cond_latent, ref_latent), )
|
| 939 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
| 940 |
+
|
| 941 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
| 942 |
+
|
| 943 |
+
batch_size, channel, height, width = sample.shape
|
| 944 |
+
if cat_dim == -2 or cat_dim == 2:
|
| 945 |
+
cond_latent = sample[:, :, :height//2, :]
|
| 946 |
+
ref_latent = sample[:, :, -(height//2):, :]
|
| 947 |
+
elif cat_dim == -1 or cat_dim == 3:
|
| 948 |
+
cond_latent = sample[:, :, :, :width//2]
|
| 949 |
+
ref_latent = sample[:, :, :, -(width//2):]
|
| 950 |
+
mid_block_res_sample = self.controlnet_mid_block((cond_latent, ref_latent), )
|
| 951 |
+
|
| 952 |
+
# 6. scaling
|
| 953 |
+
down_block_res_samples = [sample*conditioning_scale for sample in down_block_res_samples]
|
| 954 |
+
mid_block_res_sample = mid_block_res_sample*conditioning_scale
|
| 955 |
+
|
| 956 |
+
if self.config.global_pool_conditions:
|
| 957 |
+
down_block_res_samples = [
|
| 958 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
| 959 |
+
]
|
| 960 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
| 961 |
+
|
| 962 |
+
if not return_dict:
|
| 963 |
+
return (down_block_res_samples, mid_block_res_sample)
|
| 964 |
+
|
| 965 |
+
return AggregatorOutput(
|
| 966 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
| 967 |
+
)
|
| 968 |
+
|
| 969 |
+
|
| 970 |
+
def zero_module(module):
|
| 971 |
+
for p in module.parameters():
|
| 972 |
+
nn.init.zeros_(p)
|
| 973 |
+
return module
|