testapi / manga_translator /ocr /model_ocr_large.py
Sunday01's picture
up
9dce458
import math
from typing import List
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResNet(nn.Module):
def __init__(self, input_channel, output_channel, block, layers):
super(ResNet, self).__init__()
self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel]
self.inplanes = int(output_channel / 8)
self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 8),
kernel_size=3, stride=1, padding=1, bias=False)
self.bn0_1 = nn.BatchNorm2d(int(output_channel / 8))
self.conv0_2 = nn.Conv2d(int(output_channel / 8), self.inplanes,
kernel_size=3, stride=1, padding=1, bias=False)
self.maxpool1 = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0])
self.bn1 = nn.BatchNorm2d(self.output_channel_block[0])
self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[
0], kernel_size=3, stride=1, padding=1, bias=False)
self.maxpool2 = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1)
self.bn2 = nn.BatchNorm2d(self.output_channel_block[1])
self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[
1], kernel_size=3, stride=1, padding=1, bias=False)
self.maxpool3 = nn.AvgPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1))
self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1)
self.bn3 = nn.BatchNorm2d(self.output_channel_block[2])
self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[
2], kernel_size=3, stride=1, padding=1, bias=False)
self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1)
self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3])
self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False)
self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3])
self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
3], kernel_size=2, stride=1, padding=0, bias=False)
self.bn4_3 = nn.BatchNorm2d(self.output_channel_block[3])
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.BatchNorm2d(self.inplanes),
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv0_1(x)
x = self.bn0_1(x)
x = F.relu(x)
x = self.conv0_2(x)
x = self.maxpool1(x)
x = self.layer1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.conv1(x)
x = self.maxpool2(x)
x = self.layer2(x)
x = self.bn2(x)
x = F.relu(x)
x = self.conv2(x)
x = self.maxpool3(x)
x = self.layer3(x)
x = self.bn3(x)
x = F.relu(x)
x = self.conv3(x)
x = self.layer4(x)
x = self.bn4_1(x)
x = F.relu(x)
x = self.conv4_1(x)
x = self.bn4_2(x)
x = F.relu(x)
x = self.conv4_2(x)
x = self.bn4_3(x)
return x
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(inplanes)
self.conv1 = self._conv3x3(inplanes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = self._conv3x3(planes, planes)
self.downsample = downsample
self.stride = stride
def _conv3x3(self, in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def forward(self, x):
residual = x
out = self.bn1(x)
out = F.relu(out)
out = self.conv1(out)
out = self.bn2(out)
out = F.relu(out)
out = self.conv2(out)
if self.downsample is not None:
residual = self.downsample(residual)
return out + residual
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class ResNet_FeatureExtractor(nn.Module):
""" FeatureExtractor of FAN (http://openaccess.thecvf.com/content_ICCV_2017/papers/Cheng_Focusing_Attention_Towards_ICCV_2017_paper.pdf) """
def __init__(self, input_channel, output_channel=128):
super(ResNet_FeatureExtractor, self).__init__()
self.ConvNet = ResNet(input_channel, output_channel, BasicBlock, [3, 6, 7, 5])
def forward(self, input):
return self.ConvNet(input)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x, offset = 0):
x = x + self.pe[offset: offset + x.size(0), :]
return x#self.dropout(x)
def generate_square_subsequent_mask(sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
class AddCoords(nn.Module):
def __init__(self, with_r=False):
super().__init__()
self.with_r = with_r
def forward(self, input_tensor):
"""
Args:
input_tensor: shape(batch, channel, x_dim, y_dim)
"""
batch_size, _, x_dim, y_dim = input_tensor.size()
xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)
xx_channel = xx_channel.float() / (x_dim - 1)
yy_channel = yy_channel.float() / (y_dim - 1)
xx_channel = xx_channel * 2 - 1
yy_channel = yy_channel * 2 - 1
xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
ret = torch.cat([
input_tensor,
xx_channel.type_as(input_tensor),
yy_channel.type_as(input_tensor)], dim=1)
if self.with_r:
rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) - 0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2))
ret = torch.cat([ret, rr], dim=1)
return ret
class Beam:
def __init__(self, char_seq = [], logprobs = []):
# L
if isinstance(char_seq, list):
self.chars = torch.tensor(char_seq, dtype=torch.long)
self.logprobs = torch.tensor(logprobs, dtype=torch.float32)
else:
self.chars = char_seq.clone()
self.logprobs = logprobs.clone()
def avg_logprob(self):
return self.logprobs.mean().item()
def sort_key(self):
return -self.avg_logprob()
def seq_end(self, end_tok):
return self.chars.view(-1)[-1] == end_tok
def extend(self, idx, logprob):
return Beam(
torch.cat([self.chars, idx.unsqueeze(0)], dim = -1),
torch.cat([self.logprobs, logprob.unsqueeze(0)], dim = -1),
)
DECODE_BLOCK_LENGTH = 8
class Hypothesis:
def __init__(self, device, start_tok: int, end_tok: int, padding_tok: int, memory_idx: int, num_layers: int, embd_dim: int):
self.device = device
self.start_tok = start_tok
self.end_tok = end_tok
self.padding_tok = padding_tok
self.memory_idx = memory_idx
self.embd_size = embd_dim
self.num_layers = num_layers
# L, 1, E
self.cached_activations = [torch.zeros(0, 1, self.embd_size).to(self.device)] * (num_layers + 1)
self.out_idx = torch.LongTensor([start_tok]).to(self.device)
self.out_logprobs = torch.FloatTensor([0]).to(self.device)
self.length = 0
def seq_end(self):
return self.out_idx.view(-1)[-1] == self.end_tok
def logprob(self):
return self.out_logprobs.mean().item()
def sort_key(self):
return -self.logprob()
def prob(self):
return self.out_logprobs.mean().exp().item()
def __len__(self):
return self.length
def extend(self, idx, logprob):
ret = Hypothesis(self.device, self.start_tok, self.end_tok, self.padding_tok, self.memory_idx, self.num_layers, self.embd_size)
ret.cached_activations = [item.clone() for item in self.cached_activations]
ret.length = self.length + 1
ret.out_idx = torch.cat([self.out_idx, torch.LongTensor([idx]).to(self.device)], dim = 0)
ret.out_logprobs = torch.cat([self.out_logprobs, torch.FloatTensor([logprob]).to(self.device)], dim = 0)
return ret
def output(self):
return self.cached_activations[-1]
def next_token_batch(
hyps: List[Hypothesis],
memory: torch.Tensor, # S, K, E
memory_mask: torch.BoolTensor,
decoders: nn.TransformerDecoder,
pe: PositionalEncoding,
embd: nn.Embedding
):
layer: nn.TransformerDecoderLayer
N = len(hyps)
# N
last_toks = torch.stack([item.out_idx[-1] for item in hyps], dim = 0)
# 1, N, E
tgt: torch.FloatTensor = pe(embd(last_toks).unsqueeze_(0), offset = len(hyps[0]))
# # L, N
# out_idxs = torch.stack([item.out_idx for item in hyps], dim = 0).permute(1, 0)
# # L, N, E
# tgt2: torch.FloatTensor = pe(embd(out_idxs))
# # 1, N, E
# tgt_v2 = tgt2[-1, :, :].unsqueeze_(0)
# print(((tgt_v1 - tgt_v2) ** 2).sum())
# tgt = tgt_v2
# S, N, E
memory = torch.stack([memory[:, idx, :] for idx in [item.memory_idx for item in hyps]], dim = 1)
for l, layer in enumerate(decoders.layers):
# TODO: keys and values are recomputed every time
# L - 1, N, E
combined_activations = torch.cat([item.cached_activations[l] for item in hyps], dim = 1)
# L, N, E
combined_activations = torch.cat([combined_activations, tgt], dim = 0)
for i in range(N):
hyps[i].cached_activations[l] = combined_activations[:, i: i + 1, :]
tgt2 = layer.self_attn(tgt, combined_activations, combined_activations)[0]
tgt = tgt + layer.dropout1(tgt2)
tgt = layer.norm1(tgt)
tgt2 = layer.multihead_attn(tgt, memory, memory, key_padding_mask = memory_mask)[0]
tgt = tgt + layer.dropout2(tgt2)
tgt = layer.norm2(tgt)
tgt2 = layer.linear2(layer.dropout(layer.activation(layer.linear1(tgt))))
tgt = tgt + layer.dropout3(tgt2)
# 1, N, E
tgt = layer.norm3(tgt)
#print(tgt[0, 0, 0])
for i in range(N):
hyps[i].cached_activations[decoders.num_layers] = torch.cat([hyps[i].cached_activations[decoders.num_layers], tgt[:, i: i + 1, :]], dim = 0)
# N, E
return tgt.squeeze_(0)
class OCR(nn.Module):
def __init__(self, dictionary, max_len):
super(OCR, self).__init__()
self.max_len = max_len
self.dictionary = dictionary
self.dict_size = len(dictionary)
self.backbone = ResNet_FeatureExtractor(3, 320)
encoder = nn.TransformerEncoderLayer(320, 4, dropout = 0.0)
decoder = nn.TransformerDecoderLayer(320, 4, dropout = 0.0)
self.encoders = nn.TransformerEncoder(encoder, 3)
self.decoders = nn.TransformerDecoder(decoder, 3)
self.pe = PositionalEncoding(320, max_len = max_len)
self.embd = nn.Embedding(self.dict_size, 320)
self.pred1 = nn.Sequential(nn.Linear(320, 320), nn.ReLU())
self.pred = nn.Linear(320, self.dict_size)
self.pred.weight = self.embd.weight
self.color_pred1 = nn.Sequential(nn.Linear(320, 64), nn.ReLU())
self.fg_r_pred = nn.Linear(64, 1)
self.fg_g_pred = nn.Linear(64, 1)
self.fg_b_pred = nn.Linear(64, 1)
self.bg_r_pred = nn.Linear(64, 1)
self.bg_g_pred = nn.Linear(64, 1)
self.bg_b_pred = nn.Linear(64, 1)
def forward(self,
img: torch.FloatTensor,
char_idx: torch.LongTensor,
mask: torch.BoolTensor,
source_mask: torch.BoolTensor
):
feats = self.backbone(img)
feats = torch.einsum('n e h s -> s n e', feats)
feats = self.pe(feats)
memory = self.encoders(feats, src_key_padding_mask = source_mask)
N, L = char_idx.shape
char_embd = self.embd(char_idx)
char_embd = torch.einsum('n t e -> t n e', char_embd)
char_embd = self.pe(char_embd)
casual_mask = generate_square_subsequent_mask(L).to(img.device)
decoded = self.decoders(char_embd, memory, tgt_mask = casual_mask, tgt_key_padding_mask = mask, memory_key_padding_mask = source_mask)
decoded = decoded.permute(1, 0, 2)
pred_char_logits = self.pred(self.pred1(decoded))
color_feats = self.color_pred1(decoded)
return pred_char_logits, \
self.fg_r_pred(color_feats), \
self.fg_g_pred(color_feats), \
self.fg_b_pred(color_feats), \
self.bg_r_pred(color_feats), \
self.bg_g_pred(color_feats), \
self.bg_b_pred(color_feats)
def infer_beam_batch(self, img: torch.FloatTensor, img_widths: List[int], beams_k: int = 5, start_tok = 1, end_tok = 2, pad_tok = 0, max_finished_hypos: int = 2, max_seq_length = 384):
N, C, H, W = img.shape
assert H == 32 and C == 3
feats = self.backbone(img)
feats = torch.einsum('n e h s -> s n e', feats)
valid_feats_length = [(x + 3) // 4 + 2 for x in img_widths]
input_mask = torch.zeros(N, feats.size(0), dtype = torch.bool).to(img.device)
for i, l in enumerate(valid_feats_length):
input_mask[i, l:] = True
feats = self.pe(feats)
memory = self.encoders(feats, src_key_padding_mask = input_mask)
hypos = [Hypothesis(img.device, start_tok, end_tok, pad_tok, i, self.decoders.num_layers, 320) for i in range(N)]
# N, E
decoded = next_token_batch(hypos, memory, input_mask, self.decoders, self.pe, self.embd)
# N, n_chars
pred_char_logprob = self.pred(self.pred1(decoded)).log_softmax(-1)
# N, k
pred_chars_values, pred_chars_index = torch.topk(pred_char_logprob, beams_k, dim = 1)
new_hypos = []
finished_hypos = defaultdict(list)
for i in range(N):
for k in range(beams_k):
new_hypos.append(hypos[i].extend(pred_chars_index[i, k], pred_chars_values[i, k]))
hypos = new_hypos
for _ in range(max_seq_length):
# N * k, E
decoded = next_token_batch(hypos, memory, torch.stack([input_mask[hyp.memory_idx] for hyp in hypos]) , self.decoders, self.pe, self.embd)
# N * k, n_chars
pred_char_logprob = self.pred(self.pred1(decoded)).log_softmax(-1)
# N * k, k
pred_chars_values, pred_chars_index = torch.topk(pred_char_logprob, beams_k, dim = 1)
hypos_per_sample = defaultdict(list)
h: Hypothesis
for i, h in enumerate(hypos):
for k in range(beams_k):
hypos_per_sample[h.memory_idx].append(h.extend(pred_chars_index[i, k], pred_chars_values[i, k]))
hypos = []
# hypos_per_sample now contains N * k^2 hypos
for i in hypos_per_sample.keys():
cur_hypos: List[Hypothesis] = hypos_per_sample[i]
cur_hypos = sorted(cur_hypos, key = lambda a: a.sort_key())[: beams_k + 1]
#print(cur_hypos[0].out_idx[-1])
to_added_hypos = []
sample_done = False
for h in cur_hypos:
if h.seq_end():
finished_hypos[i].append(h)
if len(finished_hypos[i]) >= max_finished_hypos:
sample_done = True
break
else:
if len(to_added_hypos) < beams_k:
to_added_hypos.append(h)
if not sample_done:
hypos.extend(to_added_hypos)
if len(hypos) == 0:
break
# add remaining hypos to finished
for i in range(N):
if i not in finished_hypos:
cur_hypos: List[Hypothesis] = hypos_per_sample[i]
cur_hypo = sorted(cur_hypos, key = lambda a: a.sort_key())[0]
finished_hypos[i].append(cur_hypo)
assert len(finished_hypos) == N
result = []
for i in range(N):
cur_hypos = finished_hypos[i]
cur_hypo = sorted(cur_hypos, key = lambda a: a.sort_key())[0]
decoded = cur_hypo.output()
color_feats = self.color_pred1(decoded)
fg_r, fg_g, fg_b, bg_r, bg_g, bg_b = self.fg_r_pred(color_feats), \
self.fg_g_pred(color_feats), \
self.fg_b_pred(color_feats), \
self.bg_r_pred(color_feats), \
self.bg_g_pred(color_feats), \
self.bg_b_pred(color_feats)
result.append((cur_hypo.out_idx, cur_hypo.prob(), fg_r, fg_g, fg_b, bg_r, bg_g, bg_b))
return result
def infer_beam(self, img: torch.FloatTensor, beams_k: int = 5, start_tok = 1, end_tok = 2, pad_tok = 0, max_seq_length = 384):
N, C, H, W = img.shape
assert H == 32 and N == 1 and C == 3
feats = self.backbone(img)
feats = torch.einsum('n e h s -> s n e', feats)
feats = self.pe(feats)
memory = self.encoders(feats)
def run(tokens, add_start_tok = True, char_only = True):
if add_start_tok:
if isinstance(tokens, list):
# N(=1), L
tokens = torch.tensor([start_tok] + tokens, dtype = torch.long, device = img.device).unsqueeze_(0)
else:
# N, L
tokens = torch.cat([torch.tensor([start_tok], dtype = torch.long, device = img.device), tokens], dim = -1).unsqueeze_(0)
N, L = tokens.shape
embd = self.embd(tokens)
embd = torch.einsum('n t e -> t n e', embd)
embd = self.pe(embd)
casual_mask = generate_square_subsequent_mask(L).to(img.device)
decoded = self.decoders(embd, memory, tgt_mask = casual_mask)
decoded = decoded.permute(1, 0, 2)
pred_char_logprob = self.pred(self.pred1(decoded)).log_softmax(-1)
if char_only:
return pred_char_logprob
else:
color_feats = self.color_pred1(decoded)
return pred_char_logprob, \
self.fg_r_pred(color_feats), \
self.fg_g_pred(color_feats), \
self.fg_b_pred(color_feats), \
self.bg_r_pred(color_feats), \
self.bg_g_pred(color_feats), \
self.bg_b_pred(color_feats)
# N, L, embd_size
initial_char_logprob = run([])
# N, L
initial_pred_chars_values, initial_pred_chars_index = torch.topk(initial_char_logprob, beams_k, dim = 2)
# beams_k, L
initial_pred_chars_values = initial_pred_chars_values.squeeze(0).permute(1, 0)
initial_pred_chars_index = initial_pred_chars_index.squeeze(0).permute(1, 0)
beams = sorted([Beam(tok, logprob) for tok, logprob in zip(initial_pred_chars_index, initial_pred_chars_values)], key = lambda a: a.sort_key())
for _ in range(max_seq_length):
new_beams = []
all_ended = True
for beam in beams:
if not beam.seq_end(end_tok):
logprobs = run(beam.chars)
pred_chars_values, pred_chars_index = torch.topk(logprobs, beams_k, dim = 2)
# beams_k, L
pred_chars_values = pred_chars_values.squeeze(0).permute(1, 0)
pred_chars_index = pred_chars_index.squeeze(0).permute(1, 0)
#print(pred_chars_index.view(-1)[-1])
new_beams.extend([beam.extend(tok[-1], logprob[-1]) for tok, logprob in zip(pred_chars_index, pred_chars_values)])
#new_beams.extend([Beam(tok, logprob) for tok, logprob in zip(pred_chars_index, pred_chars_values)]) # extend other top k
all_ended = False
else:
new_beams.append(beam) # seq ended, add back to queue
beams = sorted(new_beams, key = lambda a: a.sort_key())[: beams_k] # keep top k
#print(beams[0].chars)
if all_ended:
break
final_tokens = beams[0].chars[:-1]
#print(beams[0].logprobs.mean().exp())
return run(final_tokens, char_only = False), beams[0].logprobs.mean().exp().item()
def test():
with open('../SynthText/alphabet-all-v2.txt', 'r') as fp:
dictionary = [s[:-1] for s in fp.readlines()]
img = torch.randn(4, 3, 32, 1224)
idx = torch.zeros(4, 32).long()
mask = torch.zeros(4, 32).bool()
model = ResNet_FeatureExtractor(3, 256)
out = model(img)
def test_inference():
with torch.no_grad():
with open('../SynthText/alphabet-all-v3.txt', 'r') as fp:
dictionary = [s[:-1] for s in fp.readlines()]
img = torch.zeros(1, 3, 32, 128)
model = OCR(dictionary, 32)
m = torch.load("ocr_ar_v2-3-test.ckpt", map_location='cpu')
model.load_state_dict(m['model'])
model.eval()
(char_probs, _, _, _, _, _, _, _), _ = model.infer_beam(img, max_seq_length = 20)
_, pred_chars_index = char_probs.max(2)
pred_chars_index = pred_chars_index.squeeze_(0)
seq = []
for chid in pred_chars_index:
ch = dictionary[chid]
if ch == '<SP>':
ch == ' '
seq.append(ch)
print(''.join(seq))
if __name__ == "__main__":
test()