testapi / manga_translator /inpainting /inpainting_lama.py
Sunday01's picture
up
9dce458
# Fast Fourier Convolution NeurIPS 2020
# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py
# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
from typing import List, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import abc
import random
from kornia.geometry.transform import rotate
from .inpainting_lama_mpe import LamaMPEInpainter
# Currently not used
class LamaInpainter(LamaMPEInpainter):
_MODEL_MAPPING = {
'model': {
'url': '',
'hash': '',
'file': '.',
},
}
async def _load(self, device: str):
model = get_generator()
sd = torch.load(self._get_file_path('inpainting_lama.ckpt'), map_location='cpu')
model.load_state_dict(sd['model'] if 'model' in sd else sd)
self.model.eval()
self.device = device
if device.startswith('cuda') or device == 'mps':
self.model.to(device)
class DepthWiseSeparableConv(nn.Module):
def __init__(self, in_dim, out_dim, *args, **kwargs):
super().__init__()
if 'groups' in kwargs:
# ignoring groups for Depthwise Sep Conv
del kwargs['groups']
self.depthwise = nn.Conv2d(in_dim, in_dim, *args, groups=in_dim, **kwargs)
self.pointwise = nn.Conv2d(in_dim, out_dim, kernel_size=1)
def forward(self, x):
out = self.depthwise(x)
out = self.pointwise(out)
return out
class MultidilatedConv(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size, dilation_num=3, comb_mode='sum', equal_dim=True,
shared_weights=False, padding=1, min_dilation=1, shuffle_in_channels=False, use_depthwise=False, **kwargs):
super().__init__()
convs = []
self.equal_dim = equal_dim
assert comb_mode in ('cat_out', 'sum', 'cat_in', 'cat_both'), comb_mode
if comb_mode in ('cat_out', 'cat_both'):
self.cat_out = True
if equal_dim:
assert out_dim % dilation_num == 0
out_dims = [out_dim // dilation_num] * dilation_num
self.index = sum([[i + j * (out_dims[0]) for j in range(dilation_num)] for i in range(out_dims[0])], [])
else:
out_dims = [out_dim // 2 ** (i + 1) for i in range(dilation_num - 1)]
out_dims.append(out_dim - sum(out_dims))
index = []
starts = [0] + out_dims[:-1]
lengths = [out_dims[i] // out_dims[-1] for i in range(dilation_num)]
for i in range(out_dims[-1]):
for j in range(dilation_num):
index += list(range(starts[j], starts[j] + lengths[j]))
starts[j] += lengths[j]
self.index = index
assert(len(index) == out_dim)
self.out_dims = out_dims
else:
self.cat_out = False
self.out_dims = [out_dim] * dilation_num
if comb_mode in ('cat_in', 'cat_both'):
if equal_dim:
assert in_dim % dilation_num == 0
in_dims = [in_dim // dilation_num] * dilation_num
else:
in_dims = [in_dim // 2 ** (i + 1) for i in range(dilation_num - 1)]
in_dims.append(in_dim - sum(in_dims))
self.in_dims = in_dims
self.cat_in = True
else:
self.cat_in = False
self.in_dims = [in_dim] * dilation_num
conv_type = DepthWiseSeparableConv if use_depthwise else nn.Conv2d
dilation = min_dilation
for i in range(dilation_num):
if isinstance(padding, int):
cur_padding = padding * dilation
else:
cur_padding = padding[i]
convs.append(conv_type(
self.in_dims[i], self.out_dims[i], kernel_size, padding=cur_padding, dilation=dilation, **kwargs
))
if i > 0 and shared_weights:
convs[-1].weight = convs[0].weight
convs[-1].bias = convs[0].bias
dilation *= 2
self.convs = nn.ModuleList(convs)
self.shuffle_in_channels = shuffle_in_channels
if self.shuffle_in_channels:
# shuffle list as shuffling of tensors is nondeterministic
in_channels_permute = list(range(in_dim))
random.shuffle(in_channels_permute)
# save as buffer so it is saved and loaded with checkpoint
self.register_buffer('in_channels_permute', torch.tensor(in_channels_permute))
def forward(self, x):
if self.shuffle_in_channels:
x = x[:, self.in_channels_permute]
outs = []
if self.cat_in:
if self.equal_dim:
x = x.chunk(len(self.convs), dim=1)
else:
new_x = []
start = 0
for dim in self.in_dims:
new_x.append(x[:, start:start+dim])
start += dim
x = new_x
for i, conv in enumerate(self.convs):
if self.cat_in:
input = x[i]
else:
input = x
outs.append(conv(input))
if self.cat_out:
out = torch.cat(outs, dim=1)[:, self.index]
else:
out = sum(outs)
return out
class BaseDiscriminator(nn.Module):
@abc.abstractmethod
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""
Predict scores and get intermediate activations. Useful for feature matching loss
:return tuple (scores, list of intermediate activations)
"""
raise NotImplemented()
def get_conv_block_ctor(kind='default'):
if not isinstance(kind, str):
return kind
if kind == 'default':
return nn.Conv2d
if kind == 'depthwise':
return DepthWiseSeparableConv
if kind == 'multidilated':
return MultidilatedConv
raise ValueError(f'Unknown convolutional block kind {kind}')
def get_norm_layer(kind='bn'):
if not isinstance(kind, str):
return kind
if kind == 'bn':
return nn.BatchNorm2d
if kind == 'in':
return nn.InstanceNorm2d
raise ValueError(f'Unknown norm block kind {kind}')
def get_activation(kind='tanh'):
if kind == 'tanh':
return nn.Tanh()
if kind == 'sigmoid':
return nn.Sigmoid()
if kind is False:
return nn.Identity()
raise ValueError(f'Unknown activation kind {kind}')
class LearnableSpatialTransformWrapper(nn.Module):
def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True):
super().__init__()
self.impl = impl
self.angle = torch.rand(1) * angle_init_range
if train_angle:
self.angle = nn.Parameter(self.angle, requires_grad=True)
self.pad_coef = pad_coef
def forward(self, x):
if torch.is_tensor(x):
return self.inverse_transform(self.impl(self.transform(x)), x)
elif isinstance(x, tuple):
x_trans = tuple(self.transform(elem) for elem in x)
y_trans = self.impl(x_trans)
return tuple(self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x))
else:
raise ValueError(f'Unexpected input type {type(x)}')
def transform(self, x):
height, width = x.shape[2:]
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode='reflect')
x_padded_rotated = rotate(x_padded, angle=self.angle.to(x_padded))
return x_padded_rotated
def inverse_transform(self, y_padded_rotated, orig_x):
height, width = orig_x.shape[2:]
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
y_padded = rotate(y_padded_rotated, angle=-self.angle.to(y_padded_rotated))
y_height, y_width = y_padded.shape[2:]
y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w]
return y
class FFCSE_block(nn.Module):
def __init__(self, channels, ratio_g):
super(FFCSE_block, self).__init__()
in_cg = int(channels * ratio_g)
in_cl = channels - in_cg
r = 16
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.conv1 = nn.Conv2d(channels, channels // r,
kernel_size=1, bias=True)
self.relu1 = nn.ReLU(inplace=True)
self.conv_a2l = None if in_cl == 0 else nn.Conv2d(
channels // r, in_cl, kernel_size=1, bias=True)
self.conv_a2g = None if in_cg == 0 else nn.Conv2d(
channels // r, in_cg, kernel_size=1, bias=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = x if type(x) is tuple else (x, 0)
id_l, id_g = x
x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1)
x = self.avgpool(x)
x = self.relu1(self.conv1(x))
x_l = 0 if self.conv_a2l is None else id_l * \
self.sigmoid(self.conv_a2l(x))
x_g = 0 if self.conv_a2g is None else id_g * \
self.sigmoid(self.conv_a2g(x))
return x_l, x_g
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
res = x * y.expand_as(x)
return res
class FourierUnit(nn.Module):
def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',
spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
# bn_layer not used
super(FourierUnit, self).__init__()
self.groups = groups
self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
out_channels=out_channels * 2,
kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
self.bn = torch.nn.BatchNorm2d(out_channels * 2)
self.relu = torch.nn.ReLU(inplace=True)
# squeeze and excitation block
self.use_se = use_se
if use_se:
if se_kwargs is None:
se_kwargs = {}
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
self.spatial_scale_factor = spatial_scale_factor
self.spatial_scale_mode = spatial_scale_mode
self.spectral_pos_encoding = spectral_pos_encoding
self.ffc3d = ffc3d
self.fft_norm = fft_norm
def forward(self, x):
batch = x.shape[0]
if self.spatial_scale_factor is not None:
orig_size = x.shape[-2:]
x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False)
r_size = x.size()
# (batch, c, h, w/2+1, 2)
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
ffted = ffted.view((batch, -1,) + ffted.size()[3:])
if self.spectral_pos_encoding:
height, width = ffted.shape[-2:]
coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
if self.use_se:
ffted = self.se(ffted)
ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
ffted = self.relu(self.bn(ffted))
ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2)
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)
if self.spatial_scale_factor is not None:
output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)
return output
class SpectralTransform(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs):
# bn_layer not used
super(SpectralTransform, self).__init__()
self.enable_lfu = enable_lfu
if stride == 2:
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
else:
self.downsample = nn.Identity()
self.stride = stride
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels //
2, kernel_size=1, groups=groups, bias=False),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU(inplace=True)
)
self.fu = FourierUnit(
out_channels // 2, out_channels // 2, groups, **fu_kwargs)
if self.enable_lfu:
self.lfu = FourierUnit(
out_channels // 2, out_channels // 2, groups)
self.conv2 = torch.nn.Conv2d(
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)
def forward(self, x):
x = self.downsample(x)
x = self.conv1(x)
output = self.fu(x)
if self.enable_lfu:
n, c, h, w = x.shape
split_no = 2
split_s = h // split_no
xs = torch.cat(torch.split(
x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
xs = torch.cat(torch.split(xs, split_s, dim=-1),
dim=1).contiguous()
xs = self.lfu(xs)
xs = xs.repeat(1, 1, split_no, split_no).contiguous()
else:
xs = 0
output = self.conv2(x + output + xs)
return output
class FFC(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
ratio_gin, ratio_gout, stride=1, padding=0,
dilation=1, groups=1, bias=False, enable_lfu=True,
padding_type='reflect', gated=False, **spectral_kwargs):
super(FFC, self).__init__()
assert stride == 1 or stride == 2, "Stride should be 1 or 2."
self.stride = stride
in_cg = int(in_channels * ratio_gin)
in_cl = in_channels - in_cg
out_cg = int(out_channels * ratio_gout)
out_cl = out_channels - out_cg
#groups_g = 1 if groups == 1 else int(groups * ratio_gout)
#groups_l = 1 if groups == 1 else groups - groups_g
self.ratio_gin = ratio_gin
self.ratio_gout = ratio_gout
self.global_in_num = in_cg
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
self.convl2l = module(in_cl, out_cl, kernel_size,
stride, padding, dilation, groups, bias, padding_mode=padding_type)
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
self.convl2g = module(in_cl, out_cg, kernel_size,
stride, padding, dilation, groups, bias, padding_mode=padding_type)
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
self.convg2l = module(in_cg, out_cl, kernel_size,
stride, padding, dilation, groups, bias, padding_mode=padding_type)
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
self.convg2g = module(
in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)
self.gated = gated
module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
self.gate = module(in_channels, 2, 1)
def forward(self, x):
x_l, x_g = x if type(x) is tuple else (x, 0)
out_xl, out_xg = 0, 0
if self.gated:
total_input_parts = [x_l]
if torch.is_tensor(x_g):
total_input_parts.append(x_g)
total_input = torch.cat(total_input_parts, dim=1)
gates = torch.sigmoid(self.gate(total_input))
g2l_gate, l2g_gate = gates.chunk(2, dim=1)
else:
g2l_gate, l2g_gate = 1, 1
if self.ratio_gout != 1:
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
if self.ratio_gout != 0:
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
return out_xl, out_xg
class FFC_BN_ACT(nn.Module):
def __init__(self, in_channels, out_channels,
kernel_size, ratio_gin, ratio_gout,
stride=1, padding=0, dilation=1, groups=1, bias=False,
norm_layer=nn.BatchNorm2d, activation_layer=nn.Identity,
padding_type='reflect',
enable_lfu=True, **kwargs):
super(FFC_BN_ACT, self).__init__()
self.ffc = FFC(in_channels, out_channels, kernel_size,
ratio_gin, ratio_gout, stride, padding, dilation,
groups, bias, enable_lfu, padding_type=padding_type, **kwargs)
lnorm = nn.Identity if ratio_gout == 1 else norm_layer
gnorm = nn.Identity if ratio_gout == 0 else norm_layer
global_channels = int(out_channels * ratio_gout)
self.bn_l = lnorm(out_channels - global_channels)
self.bn_g = gnorm(global_channels)
lact = nn.Identity if ratio_gout == 1 else activation_layer
gact = nn.Identity if ratio_gout == 0 else activation_layer
self.act_l = lact(inplace=True)
self.act_g = gact(inplace=True)
def forward(self, x):
x_l, x_g = self.ffc(x)
x_l = self.act_l(self.bn_l(x_l))
x_g = self.act_g(self.bn_g(x_g))
return x_l, x_g
class FFCResnetBlock(nn.Module):
def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1,
spatial_transform_kwargs=None, inline=False, **conv_kwargs):
super().__init__()
self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
norm_layer=norm_layer,
activation_layer=activation_layer,
padding_type=padding_type,
**conv_kwargs)
self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
norm_layer=norm_layer,
activation_layer=activation_layer,
padding_type=padding_type,
**conv_kwargs)
if spatial_transform_kwargs is not None:
self.conv1 = LearnableSpatialTransformWrapper(self.conv1, **spatial_transform_kwargs)
self.conv2 = LearnableSpatialTransformWrapper(self.conv2, **spatial_transform_kwargs)
self.inline = inline
def forward(self, x):
if self.inline:
x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
else:
x_l, x_g = x if type(x) is tuple else (x, 0)
id_l, id_g = x_l, x_g
x_l, x_g = self.conv1((x_l, x_g))
x_l, x_g = self.conv2((x_l, x_g))
x_l, x_g = id_l + x_l, id_g + x_g
out = x_l, x_g
if self.inline:
out = torch.cat(out, dim=1)
return out
class ConcatTupleLayer(nn.Module):
def forward(self, x):
assert isinstance(x, tuple)
x_l, x_g = x
assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
if not torch.is_tensor(x_g):
return x_l
return torch.cat(x, dim=1)
class FFCResNetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
padding_type='reflect', activation_layer=nn.ReLU,
up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True),
init_conv_kwargs={}, downsample_conv_kwargs={}, resnet_conv_kwargs={},
spatial_transform_layers=None, spatial_transform_kwargs={},
add_out_act=True, max_features=1024, out_ffc=False, out_ffc_kwargs={}):
assert (n_blocks >= 0)
super().__init__()
model = [nn.ReflectionPad2d(1),
FFC_BN_ACT(input_nc, ngf, kernel_size=3, padding=0, norm_layer=norm_layer,
activation_layer=activation_layer, **init_conv_kwargs)]
### downsample
for i in range(n_downsampling):
mult = 2 ** i
if i == n_downsampling - 1:
cur_conv_kwargs = dict(downsample_conv_kwargs)
cur_conv_kwargs['ratio_gout'] = resnet_conv_kwargs.get('ratio_gin', 0)
else:
cur_conv_kwargs = downsample_conv_kwargs
model += [FFC_BN_ACT(min(max_features, ngf * mult),
min(max_features, ngf * mult * 2),
kernel_size=4, stride=2, padding=1,
norm_layer=norm_layer,
activation_layer=activation_layer,
**cur_conv_kwargs)]
mult = 2 ** n_downsampling
feats_num_bottleneck = min(max_features, ngf * mult)
### resnet blocks
for i in range(n_blocks):
cur_resblock = FFCResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation_layer=activation_layer,
norm_layer=norm_layer, **resnet_conv_kwargs)
if spatial_transform_layers is not None and i in spatial_transform_layers:
cur_resblock = LearnableSpatialTransformWrapper(cur_resblock, **spatial_transform_kwargs)
model += [cur_resblock]
model += [ConcatTupleLayer()]
### upsample
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += [nn.ConvTranspose2d(min(max_features, ngf * mult),
min(max_features, int(ngf * mult / 2)),
kernel_size=4, stride=2, padding=1, output_padding=0),
up_norm_layer(min(max_features, int(ngf * mult / 2))),
up_activation]
if out_ffc:
model += [FFCResnetBlock(ngf, padding_type=padding_type, activation_layer=activation_layer,
norm_layer=norm_layer, inline=True, **out_ffc_kwargs)]
model += [nn.ReflectionPad2d(1),
nn.Conv2d(ngf, output_nc, kernel_size=3, padding=0)]
if add_out_act:
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
self.model = nn.Sequential(*model)
def forward(self, input, mask = None):
if mask is not None:
input = torch.cat([mask, input], dim = 1)
return self.model(input)
class FFCNLayerDiscriminator(BaseDiscriminator):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, max_features=512,
init_conv_kwargs={}, conv_kwargs={}):
super().__init__()
self.n_layers = n_layers
def _act_ctor(inplace=True):
return nn.LeakyReLU(negative_slope=0.2, inplace=inplace)
kw = 3
padw = int(np.ceil((kw-1.0)/2))
sequence = [[FFC_BN_ACT(input_nc, ndf, kernel_size=kw, padding=padw, norm_layer=norm_layer,
activation_layer=_act_ctor, **init_conv_kwargs)]]
nf = ndf
for n in range(1, n_layers):
nf_prev = nf
nf = min(nf * 2, max_features)
cur_model = [
FFC_BN_ACT(nf_prev, nf,
kernel_size=kw, stride=2, padding=padw,
norm_layer=norm_layer,
activation_layer=_act_ctor,
**conv_kwargs)
]
sequence.append(cur_model)
nf_prev = nf
nf = min(nf * 2, 512)
cur_model = [
FFC_BN_ACT(nf_prev, nf,
kernel_size=kw, stride=1, padding=padw,
norm_layer=norm_layer,
activation_layer=lambda *args, **kwargs: nn.LeakyReLU(*args, negative_slope=0.2, **kwargs),
**conv_kwargs),
ConcatTupleLayer()
]
sequence.append(cur_model)
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
for n in range(len(sequence)):
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
def get_all_activations(self, x):
res = [x]
for n in range(self.n_layers + 2):
model = getattr(self, 'model' + str(n))
res.append(model(res[-1]))
return res[1:]
def forward(self, x):
act = self.get_all_activations(x)
feats = []
for out in act[:-1]:
if isinstance(out, tuple):
if torch.is_tensor(out[1]):
out = torch.cat(out, dim=1)
else:
out = out[0]
feats.append(out)
return act[-1], feats
def get_generator(n_blocks: int = 9):
init_conv_kwargs = {
'ratio_gin': 0,
'ratio_gout': 0,
'enable_lfu': False,
}
downsample_conv_kwargs = {
'ratio_gin': 0,
'ratio_gout': 0,
'enable_lfu': False,
}
resnet_conv_kwargs = {
'ratio_gin': 0.75,
'ratio_gout': 0.75,
'enable_lfu': False,
}
return FFCResNetGenerator(4, 3, ngf=64, n_blocks=n_blocks,add_out_act=False,init_conv_kwargs=init_conv_kwargs,downsample_conv_kwargs=downsample_conv_kwargs,resnet_conv_kwargs=resnet_conv_kwargs)
def get_discriminator():
init_conv_kwargs = {
'ratio_gin': 0,
'ratio_gout': 0,
'enable_lfu': False,
}
conv_kwargs = {
'ratio_gin': 0,
'ratio_gout': 0,
'enable_lfu': False,
}
return FFCNLayerDiscriminator(3, norm_layer = nn.Identity, init_conv_kwargs = init_conv_kwargs, conv_kwargs = conv_kwargs)
from torchsummary import summary
def test_model():
dis = get_generator()
image = torch.randn((1, 4, 640, 640))
final = dis(image)
breakpoint()
print(final.shape)
if __name__ == '__main__':
test_model()