testapi / manga_translator /inpainting /inpainting_attn.py
Sunday01's picture
up
9dce458
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
def relu_nf(x):
return F.relu(x) * 1.7139588594436646
def gelu_nf(x):
return F.gelu(x) * 1.7015043497085571
def silu_nf(x):
return F.silu(x) * 1.7881293296813965
class LambdaLayer(nn.Module):
def __init__(self, f):
super(LambdaLayer, self).__init__()
self.f = f
def forward(self, x):
return self.f(x)
class ScaledWSConv2d(nn.Conv2d):
"""2D Conv layer with Scaled Weight Standardization."""
def __init__(self, in_channels, out_channels, kernel_size,
stride=1, padding=0,
dilation=1, groups=1, bias=True, gain=True,
eps=1e-4):
nn.Conv2d.__init__(self, in_channels, out_channels,
kernel_size, stride,
padding, dilation,
groups, bias)
#nn.init.kaiming_normal_(self.weight)
if gain:
self.gain = nn.Parameter(torch.ones(self.out_channels, 1, 1, 1))
else:
self.gain = None
# Epsilon, a small constant to avoid dividing by zero.
self.eps = eps
def get_weight(self):
# Get Scaled WS weight OIHW;
fan_in = np.prod(self.weight.shape[1:])
var, mean = torch.var_mean(self.weight, dim=(1, 2, 3), keepdims=True)
scale = torch.rsqrt(torch.max(
var * fan_in, torch.tensor(self.eps).to(var.device))) * self.gain.view_as(var).to(var.device)
shift = mean * scale
return self.weight * scale - shift
def forward(self, x):
return F.conv2d(x, self.get_weight(), self.bias,
self.stride, self.padding,
self.dilation, self.groups)
class ScaledWSTransposeConv2d(nn.ConvTranspose2d):
"""2D Transpose Conv layer with Scaled Weight Standardization."""
def __init__(self, in_channels: int,
out_channels: int,
kernel_size,
stride = 1,
padding = 0,
output_padding = 0,
groups: int = 1,
bias: bool = True,
dilation: int = 1,
gain=True,
eps=1e-4):
nn.ConvTranspose2d.__init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, groups, bias, dilation, 'zeros')
#nn.init.kaiming_normal_(self.weight)
if gain:
self.gain = nn.Parameter(torch.ones(self.in_channels, 1, 1, 1))
else:
self.gain = None
# Epsilon, a small constant to avoid dividing by zero.
self.eps = eps
def get_weight(self):
# Get Scaled WS weight OIHW;
fan_in = np.prod(self.weight.shape[1:])
var, mean = torch.var_mean(self.weight, dim=(1, 2, 3), keepdims=True)
scale = torch.rsqrt(torch.max(
var * fan_in, torch.tensor(self.eps).to(var.device))) * self.gain.view_as(var).to(var.device)
shift = mean * scale
return self.weight * scale - shift
def forward(self, x, output_size: Optional[List[int]] = None):
output_padding = self._output_padding(
input, output_size, self.stride, self.padding, self.kernel_size, self.dilation)
return F.conv_transpose2d(x, self.get_weight(), self.bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)
class GatedWSConvPadded(nn.Module):
def __init__(self, in_ch, out_ch, ks, stride = 1, dilation = 1):
super(GatedWSConvPadded, self).__init__()
self.in_ch = in_ch
self.out_ch = out_ch
self.padding = nn.ReflectionPad2d((ks - 1) // 2)
self.conv = ScaledWSConv2d(in_ch, out_ch, kernel_size = ks, stride = stride)
self.conv_gate = ScaledWSConv2d(in_ch, out_ch, kernel_size = ks, stride = stride)
def forward(self, x):
x = self.padding(x)
signal = self.conv(x)
gate = torch.sigmoid(self.conv_gate(x))
return signal * gate * 1.8
class GatedWSTransposeConvPadded(nn.Module):
def __init__(self, in_ch, out_ch, ks, stride = 1):
super(GatedWSTransposeConvPadded, self).__init__()
self.in_ch = in_ch
self.out_ch = out_ch
self.conv = ScaledWSTransposeConv2d(in_ch, out_ch, kernel_size = ks, stride = stride, padding = (ks - 1) // 2)
self.conv_gate = ScaledWSTransposeConv2d(in_ch, out_ch, kernel_size = ks, stride = stride, padding = (ks - 1) // 2)
def forward(self, x):
signal = self.conv(x)
gate = torch.sigmoid(self.conv_gate(x))
return signal * gate * 1.8
class ResBlock(nn.Module):
def __init__(self, ch, alpha = 0.2, beta = 1.0, dilation = 1):
super(ResBlock, self).__init__()
self.alpha = alpha
self.beta = beta
self.c1 = GatedWSConvPadded(ch, ch, 3, dilation = dilation)
self.c2 = GatedWSConvPadded(ch, ch, 3, dilation = dilation)
def forward(self, x):
skip = x
x = self.c1(relu_nf(x / self.beta))
x = self.c2(relu_nf(x))
x = x * self.alpha
return x + skip
# from https://github.com/SayedNadim/Global-and-Local-Attention-Based-Free-Form-Image-Inpainting
class GlobalAttention(nn.Module):
""" Self attention Layer"""
def __init__(self, in_dim):
super(GlobalAttention, self).__init__()
self.channel_in = in_dim
self.query_conv = ScaledWSConv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.key_conv = ScaledWSConv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.value_conv = ScaledWSConv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.softmax = nn.Softmax(dim=-1) #
self.rate = 1
self.gamma = nn.parameter.Parameter(torch.tensor([1.0], requires_grad=True), requires_grad=True)
def forward(self, a, b, c):
m_batchsize, C, height, width = a.size() # B, C, H, W
c = F.interpolate(c, size=(height, width), mode='nearest')
proj_query = self.query_conv(a).view(m_batchsize, -1, width * height).permute(0, 2, 1) # B, C, N -> B N C
proj_key = self.key_conv(b).view(m_batchsize, -1, width * height) # B, C, N
feature_similarity = torch.bmm(proj_query, proj_key) # B, N, N
mask = c.view(m_batchsize, -1, width * height) # B, C, N
mask = mask.repeat(1, height * width, 1).permute(0, 2, 1) # B, 1, H, W -> B, C, H, W // B
feature_pruning = feature_similarity * mask
attention = self.softmax(feature_pruning) # B, N, C
feature_pruning = torch.bmm(self.value_conv(a).view(m_batchsize, -1, width * height),
attention.permute(0, 2, 1)) # -. B, C, N
out = feature_pruning.view(m_batchsize, C, height, width) # B, C, H, W
out = a * c + self.gamma * (1.0 - c) * out
return out
class CoarseGenerator(nn.Module):
def __init__(self, in_ch = 4, out_ch = 3, ch = 32, alpha = 0.2):
super(CoarseGenerator, self).__init__()
self.head = nn.Sequential(
GatedWSConvPadded(in_ch, ch, 3, stride = 1),
LambdaLayer(relu_nf),
GatedWSConvPadded(ch, ch * 2, 4, stride = 2),
LambdaLayer(relu_nf),
GatedWSConvPadded(ch * 2, ch * 4, 4, stride = 2),
)
self.beta = 1.0
self.alpha = alpha
self.body_conv = []
self.body_conv.append(ResBlock(ch * 4, self.alpha, self.beta))
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_conv.append(ResBlock(ch * 4, self.alpha, self.beta))
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_conv.append(ResBlock(ch * 4, self.alpha, self.beta, 2))
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_conv.append(ResBlock(ch * 4, self.alpha, self.beta, 4))
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_conv.append(ResBlock(ch * 4, self.alpha, self.beta, 8))
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_conv.append(ResBlock(ch * 4, self.alpha, self.beta, 16))
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_conv = nn.Sequential(*self.body_conv)
self.tail = nn.Sequential(
LambdaLayer(relu_nf),
GatedWSConvPadded(ch * 8, ch * 8, 3, 1),
LambdaLayer(relu_nf),
GatedWSConvPadded(ch * 8, ch * 4, 3, 1),
LambdaLayer(relu_nf),
GatedWSConvPadded(ch * 4, ch * 4, 3, 1),
LambdaLayer(relu_nf),
GatedWSConvPadded(ch * 4, ch * 4, 3, 1),
LambdaLayer(relu_nf),
GatedWSTransposeConvPadded(ch * 4, ch * 2, 4, 2),
LambdaLayer(relu_nf),
GatedWSTransposeConvPadded(ch * 2, ch, 4, 2),
LambdaLayer(relu_nf),
GatedWSConvPadded(ch, out_ch, 3, stride = 1),
)
self.beta = 1.0
self.body_attn_1 = ResBlock(ch * 4, self.alpha, self.beta)
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_attn_2 = ResBlock(ch * 4, self.alpha, self.beta)
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_attn_3 = ResBlock(ch * 4, self.alpha, self.beta)
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_attn_4 = ResBlock(ch * 4, self.alpha, self.beta)
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_attn_attn = GlobalAttention(in_dim = ch * 4)
self.body_attn_5 = ResBlock(ch * 4, self.alpha, self.beta)
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
self.body_attn_6 = ResBlock(ch * 4, self.alpha, self.beta)
self.beta = (self.beta ** 2 + self.alpha ** 2) ** 0.5
def forward(self, img, mask):
x = torch.cat([mask, img], dim = 1)
x = self.head(x)
attn = self.body_attn_1(x)
attn = self.body_attn_2(attn)
attn = self.body_attn_3(attn)
attn = self.body_attn_4(attn)
attn = self.body_attn_attn(attn, attn, mask)
attn = self.body_attn_5(attn)
attn = self.body_attn_6(attn)
conv = self.body_conv(x)
x = self.tail(torch.cat([conv, attn], dim = 1))
return torch.clip(x, -1, 1)
class InpaintingVanilla(nn.Module):
def __init__(self):
super(InpaintingVanilla, self).__init__()
self.coarse_generator = CoarseGenerator(4, 3, 32)
def forward(self, x, mask):
x_stage1 = self.coarse_generator(x, mask)
return x_stage1