Sunday01's picture
up
9dce458
import pyclipper
import cv2
import numpy as np
from shapely.geometry import Polygon
import torch
class SegDetectorRepresenter():
def __init__(self, thresh=0.6, box_thresh=0.8, max_candidates=1000, unclip_ratio=2.2):
self.min_size = 3
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
def __call__(self, batch, pred, is_output_polygon=False):
'''
batch: (image, polygons, ignore_tags
batch: a dict produced by dataloaders.
image: tensor of shape (N, C, H, W).
polygons: tensor of shape (N, K, 4, 2), the polygons of objective regions.
ignore_tags: tensor of shape (N, K), indicates whether a region is ignorable or not.
shape: the original shape of images.
filename: the original filenames of images.
pred:
binary: text region segmentation map, with shape (N, H, W)
thresh: [if exists] thresh hold prediction with shape (N, H, W)
thresh_binary: [if exists] binarized with threshold, (N, H, W)
'''
pred = pred[:, 0, :, :]
segmentation = self.binarize(pred)
boxes_batch = []
scores_batch = []
batch_size = pred.size(0) if isinstance(pred, torch.Tensor) else pred.shape[0]
for batch_index in range(batch_size):
height, width = batch['shape'][batch_index]
if is_output_polygon:
boxes, scores = self.polygons_from_bitmap(pred[batch_index], segmentation[batch_index], width, height)
else:
boxes, scores = self.boxes_from_bitmap(pred[batch_index], segmentation[batch_index], width, height)
boxes_batch.append(boxes)
scores_batch.append(scores)
return boxes_batch, scores_batch
def binarize(self, pred):
return pred > self.thresh
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (H, W),
whose values are binarized as {0, 1}
'''
assert len(_bitmap.shape) == 2
bitmap = _bitmap.cpu().numpy() # The first channel
pred = pred.cpu().detach().numpy()
height, width = bitmap.shape
boxes = []
scores = []
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:self.max_candidates]:
epsilon = 0.005 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
points = approx.reshape((-1, 2))
if points.shape[0] < 4:
continue
# _, sside = self.get_mini_boxes(contour)
# if sside < self.min_size:
# continue
score = self.box_score_fast(pred, contour.squeeze(1))
if self.box_thresh > score:
continue
if points.shape[0] > 2:
box = self.unclip(points, unclip_ratio=self.unclip_ratio)
if len(box) > 1:
continue
else:
continue
box = box.reshape(-1, 2)
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < self.min_size + 2:
continue
if not isinstance(dest_width, int):
dest_width = dest_width.item()
dest_height = dest_height.item()
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box)
scores.append(score)
return boxes, scores
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (H, W),
whose values are binarized as {0, 1}
'''
assert len(_bitmap.shape) == 2
if isinstance(pred, torch.Tensor):
bitmap = _bitmap.cpu().numpy() # The first channel
pred = pred.cpu().detach().numpy()
else:
bitmap = _bitmap
height, width = bitmap.shape
try:
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
except ValueError:
return [], []
num_contours = min(len(contours), self.max_candidates)
boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
scores = np.zeros((num_contours,), dtype=np.float32)
for index in range(num_contours):
contour = contours[index].squeeze(1)
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
score = self.box_score_fast(pred, contour)
if self.box_thresh > score:
continue
box = self.unclip(points, unclip_ratio=self.unclip_ratio).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
if not isinstance(dest_width, int):
dest_width = dest_width.item()
dest_height = dest_height.item()
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
startidx = box.sum(axis=1).argmin()
box = np.roll(box, 4-startidx, 0)
box = np.array(box)
boxes[index, :, :] = box.astype(np.int16)
scores[index] = score
return boxes, scores
def unclip(self, box, unclip_ratio=1.8):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [points[index_1], points[index_2], points[index_3], points[index_4]]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]