|
from operator import mod
|
|
from cv2 import imshow
|
|
|
|
from copy import deepcopy
|
|
from .common import *
|
|
|
|
class Detect(nn.Module):
|
|
stride = None
|
|
onnx_dynamic = False
|
|
|
|
def __init__(self, nc=80, anchors=(), ch=(), inplace=True):
|
|
super().__init__()
|
|
self.nc = nc
|
|
self.no = nc + 5
|
|
self.nl = len(anchors)
|
|
self.na = len(anchors[0]) // 2
|
|
self.grid = [torch.zeros(1)] * self.nl
|
|
self.anchor_grid = [torch.zeros(1)] * self.nl
|
|
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))
|
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)
|
|
self.inplace = inplace
|
|
|
|
def forward(self, x):
|
|
z = []
|
|
for i in range(self.nl):
|
|
x[i] = self.m[i](x[i])
|
|
bs, _, ny, nx = x[i].shape
|
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
|
|
|
if not self.training:
|
|
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
|
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
|
|
|
y = x[i].sigmoid()
|
|
if self.inplace:
|
|
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]
|
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
|
|
else:
|
|
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]
|
|
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
|
|
y = torch.cat((xy, wh, y[..., 4:]), -1)
|
|
z.append(y.view(bs, -1, self.no))
|
|
|
|
return x if self.training else (torch.cat(z, 1), x)
|
|
|
|
def _make_grid(self, nx=20, ny=20, i=0):
|
|
d = self.anchors[i].device
|
|
if check_version(torch.__version__, '1.10.0'):
|
|
yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')
|
|
else:
|
|
yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])
|
|
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
|
|
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
|
|
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
|
|
return grid, anchor_grid
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):
|
|
super().__init__()
|
|
self.out_indices = None
|
|
if isinstance(cfg, dict):
|
|
self.yaml = cfg
|
|
else:
|
|
import yaml
|
|
self.yaml_file = Path(cfg).name
|
|
with open(cfg, encoding='ascii', errors='ignore') as f:
|
|
self.yaml = yaml.safe_load(f)
|
|
|
|
|
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch)
|
|
if nc and nc != self.yaml['nc']:
|
|
|
|
self.yaml['nc'] = nc
|
|
if anchors:
|
|
|
|
self.yaml['anchors'] = round(anchors)
|
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])
|
|
self.names = [str(i) for i in range(self.yaml['nc'])]
|
|
self.inplace = self.yaml.get('inplace', True)
|
|
|
|
|
|
m = self.model[-1]
|
|
|
|
if isinstance(m, Detect):
|
|
s = 256
|
|
m.inplace = self.inplace
|
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])
|
|
m.anchors /= m.stride.view(-1, 1, 1)
|
|
check_anchor_order(m)
|
|
self.stride = m.stride
|
|
self._initialize_biases()
|
|
|
|
|
|
initialize_weights(self)
|
|
|
|
def forward(self, x, augment=False, profile=False, visualize=False, detect=False):
|
|
|
|
|
|
return self._forward_once(x, profile, visualize, detect=detect)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _forward_once(self, x, profile=False, visualize=False, detect=False):
|
|
y, dt = [], []
|
|
z = []
|
|
for ii, m in enumerate(self.model):
|
|
if m.f != -1:
|
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]
|
|
if profile:
|
|
self._profile_one_layer(m, x, dt)
|
|
x = m(x)
|
|
y.append(x if m.i in self.save else None)
|
|
if self.out_indices is not None:
|
|
if m.i in self.out_indices:
|
|
z.append(x)
|
|
if self.out_indices is not None:
|
|
if detect:
|
|
return x, z
|
|
else:
|
|
return z
|
|
else:
|
|
return x
|
|
|
|
def _descale_pred(self, p, flips, scale, img_size):
|
|
|
|
if self.inplace:
|
|
p[..., :4] /= scale
|
|
if flips == 2:
|
|
p[..., 1] = img_size[0] - p[..., 1]
|
|
elif flips == 3:
|
|
p[..., 0] = img_size[1] - p[..., 0]
|
|
else:
|
|
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale
|
|
if flips == 2:
|
|
y = img_size[0] - y
|
|
elif flips == 3:
|
|
x = img_size[1] - x
|
|
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
|
return p
|
|
|
|
def _clip_augmented(self, y):
|
|
|
|
nl = self.model[-1].nl
|
|
g = sum(4 ** x for x in range(nl))
|
|
e = 1
|
|
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))
|
|
y[0] = y[0][:, :-i]
|
|
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))
|
|
y[-1] = y[-1][:, i:]
|
|
return y
|
|
|
|
def _profile_one_layer(self, m, x, dt):
|
|
c = isinstance(m, Detect)
|
|
for _ in range(10):
|
|
m(x.copy() if c else x)
|
|
|
|
|
|
def _initialize_biases(self, cf=None):
|
|
|
|
|
|
m = self.model[-1]
|
|
for mi, s in zip(m.m, m.stride):
|
|
b = mi.bias.view(m.na, -1)
|
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2)
|
|
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())
|
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
def _print_biases(self):
|
|
m = self.model[-1]
|
|
for mi in m.m:
|
|
b = mi.bias.detach().view(m.na, -1).T
|
|
|
|
def fuse(self):
|
|
for m in self.model.modules():
|
|
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
|
m.conv = fuse_conv_and_bn(m.conv, m.bn)
|
|
delattr(m, 'bn')
|
|
m.forward = m.forward_fuse
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def _apply(self, fn):
|
|
|
|
self = super()._apply(fn)
|
|
m = self.model[-1]
|
|
if isinstance(m, Detect):
|
|
m.stride = fn(m.stride)
|
|
m.grid = list(map(fn, m.grid))
|
|
if isinstance(m.anchor_grid, list):
|
|
m.anchor_grid = list(map(fn, m.anchor_grid))
|
|
return self
|
|
|
|
def parse_model(d, ch):
|
|
|
|
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors
|
|
no = na * (nc + 5)
|
|
|
|
layers, save, c2 = [], [], ch[-1]
|
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):
|
|
m = eval(m) if isinstance(m, str) else m
|
|
for j, a in enumerate(args):
|
|
try:
|
|
args[j] = eval(a) if isinstance(a, str) else a
|
|
except NameError:
|
|
pass
|
|
|
|
n = n_ = max(round(n * gd), 1) if n > 1 else n
|
|
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
|
|
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
|
|
c1, c2 = ch[f], args[0]
|
|
if c2 != no:
|
|
c2 = make_divisible(c2 * gw, 8)
|
|
|
|
args = [c1, c2, *args[1:]]
|
|
if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
|
|
args.insert(2, n)
|
|
n = 1
|
|
elif m is nn.BatchNorm2d:
|
|
args = [ch[f]]
|
|
elif m is Concat:
|
|
c2 = sum(ch[x] for x in f)
|
|
elif m is Detect:
|
|
args.append([ch[x] for x in f])
|
|
if isinstance(args[1], int):
|
|
args[1] = [list(range(args[1] * 2))] * len(f)
|
|
elif m is Contract:
|
|
c2 = ch[f] * args[0] ** 2
|
|
elif m is Expand:
|
|
c2 = ch[f] // args[0] ** 2
|
|
else:
|
|
c2 = ch[f]
|
|
|
|
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)
|
|
t = str(m)[8:-2].replace('__main__.', '')
|
|
np = sum(x.numel() for x in m_.parameters())
|
|
m_.i, m_.f, m_.type, m_.np = i, f, t, np
|
|
|
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)
|
|
layers.append(m_)
|
|
if i == 0:
|
|
ch = []
|
|
ch.append(c2)
|
|
return nn.Sequential(*layers), sorted(save)
|
|
|
|
def load_yolov5(weights, map_location='cuda', fuse=True, inplace=True, out_indices=[1, 3, 5, 7, 9]):
|
|
if isinstance(weights, str):
|
|
ckpt = torch.load(weights, map_location=map_location)
|
|
else:
|
|
ckpt = weights
|
|
|
|
if fuse:
|
|
model = ckpt['model'].float().fuse().eval()
|
|
else:
|
|
model = ckpt['model'].float().eval()
|
|
|
|
|
|
for m in model.modules():
|
|
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
|
|
m.inplace = inplace
|
|
if type(m) is Detect:
|
|
if not isinstance(m.anchor_grid, list):
|
|
delattr(m, 'anchor_grid')
|
|
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
|
elif type(m) is Conv:
|
|
m._non_persistent_buffers_set = set()
|
|
model.out_indices = out_indices
|
|
return model
|
|
|
|
@torch.no_grad()
|
|
def load_yolov5_ckpt(weights, map_location='cpu', fuse=True, inplace=True, out_indices=[1, 3, 5, 7, 9]):
|
|
if isinstance(weights, str):
|
|
ckpt = torch.load(weights, map_location=map_location)
|
|
else:
|
|
ckpt = weights
|
|
|
|
model = Model(ckpt['cfg'])
|
|
model.load_state_dict(ckpt['weights'], strict=True)
|
|
|
|
if fuse:
|
|
model = model.float().fuse().eval()
|
|
else:
|
|
model = model.float().eval()
|
|
|
|
|
|
for m in model.modules():
|
|
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
|
|
m.inplace = inplace
|
|
if type(m) is Detect:
|
|
if not isinstance(m.anchor_grid, list):
|
|
delattr(m, 'anchor_grid')
|
|
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
|
elif type(m) is Conv:
|
|
m._non_persistent_buffers_set = set()
|
|
model.out_indices = out_indices
|
|
return model |