|
from typing import List
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from .utils.imgproc_utils import union_area, enlarge_window
|
|
from ...utils import TextBlock, Quadrilateral
|
|
|
|
WHITE = (255, 255, 255)
|
|
BLACK = (0, 0, 0)
|
|
LANG_ENG = 0
|
|
LANG_JPN = 1
|
|
|
|
REFINEMASK_INPAINT = 0
|
|
REFINEMASK_ANNOTATION = 1
|
|
|
|
def get_topk_color(color_list, bins, k=3, color_var=10, bin_tol=0.001):
|
|
idx = np.argsort(bins * -1)
|
|
color_list, bins = color_list[idx], bins[idx]
|
|
top_colors = [color_list[0]]
|
|
bin_tol = np.sum(bins) * bin_tol
|
|
if len(color_list) > 1:
|
|
for color, bin in zip(color_list[1:], bins[1:]):
|
|
if np.abs(np.array(top_colors) - color).min() > color_var:
|
|
top_colors.append(color)
|
|
if len(top_colors) >= k or bin < bin_tol:
|
|
break
|
|
return top_colors
|
|
|
|
def minxor_thresh(threshed, mask, dilate=False):
|
|
neg_threshed = 255 - threshed
|
|
e_size = 1
|
|
if dilate:
|
|
element = cv2.getStructuringElement(cv2.MORPH_RECT, (2 * e_size + 1, 2 * e_size + 1),(e_size, e_size))
|
|
neg_threshed = cv2.dilate(neg_threshed, element, iterations=1)
|
|
threshed = cv2.dilate(threshed, element, iterations=1)
|
|
neg_xor_sum = cv2.bitwise_xor(neg_threshed, mask).sum()
|
|
xor_sum = cv2.bitwise_xor(threshed, mask).sum()
|
|
if neg_xor_sum < xor_sum:
|
|
return neg_threshed, neg_xor_sum
|
|
else:
|
|
return threshed, xor_sum
|
|
|
|
def get_otsuthresh_masklist(img, pred_mask, per_channel=False) -> List[np.ndarray]:
|
|
channels = [img[..., 0], img[..., 1], img[..., 2]]
|
|
mask_list = []
|
|
for c in channels:
|
|
_, threshed = cv2.threshold(c, 1, 255, cv2.THRESH_OTSU+cv2.THRESH_BINARY)
|
|
threshed, xor_sum = minxor_thresh(threshed, pred_mask, dilate=False)
|
|
mask_list.append([threshed, xor_sum])
|
|
mask_list.sort(key=lambda x: x[1])
|
|
if per_channel:
|
|
return mask_list
|
|
else:
|
|
return [mask_list[0]]
|
|
|
|
def get_topk_masklist(im_grey, pred_mask):
|
|
if len(im_grey.shape) == 3 and im_grey.shape[-1] == 3:
|
|
im_grey = cv2.cvtColor(im_grey, cv2.COLOR_BGR2GRAY)
|
|
msk = np.ascontiguousarray(pred_mask)
|
|
candidate_grey_px = im_grey[np.where(cv2.erode(msk, np.ones((3,3), np.uint8), iterations=1) > 127)]
|
|
bin, his = np.histogram(candidate_grey_px, bins=255)
|
|
topk_color = get_topk_color(his, bin, color_var=10, k=3)
|
|
color_range = 30
|
|
mask_list = list()
|
|
for ii, color in enumerate(topk_color):
|
|
c_top = min(color+color_range, 255)
|
|
c_bottom = c_top - 2 * color_range
|
|
threshed = cv2.inRange(im_grey, c_bottom, c_top)
|
|
threshed, xor_sum = minxor_thresh(threshed, msk)
|
|
mask_list.append([threshed, xor_sum])
|
|
return mask_list
|
|
|
|
def merge_mask_list(mask_list, pred_mask, blk: Quadrilateral = None, pred_thresh=30, text_window=None, filter_with_lines=False, refine_mode=REFINEMASK_INPAINT):
|
|
mask_list.sort(key=lambda x: x[1])
|
|
linemask = None
|
|
if blk is not None and filter_with_lines:
|
|
linemask = np.zeros_like(pred_mask)
|
|
lines = blk.pts.astype(np.int64)
|
|
for line in lines:
|
|
line[..., 0] -= text_window[0]
|
|
line[..., 1] -= text_window[1]
|
|
cv2.fillPoly(linemask, [line], 255)
|
|
linemask = cv2.dilate(linemask, np.ones((3, 3), np.uint8), iterations=3)
|
|
|
|
if pred_thresh > 0:
|
|
e_size = 1
|
|
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * e_size + 1, 2 * e_size + 1),(e_size, e_size))
|
|
pred_mask = cv2.erode(pred_mask, element, iterations=1)
|
|
_, pred_mask = cv2.threshold(pred_mask, 60, 255, cv2.THRESH_BINARY)
|
|
connectivity = 8
|
|
mask_merged = np.zeros_like(pred_mask)
|
|
for ii, (candidate_mask, xor_sum) in enumerate(mask_list):
|
|
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(candidate_mask, connectivity, cv2.CV_16U)
|
|
for label_index, stat, centroid in zip(range(num_labels), stats, centroids):
|
|
if label_index != 0:
|
|
x, y, w, h, area = stat
|
|
if w * h < 3:
|
|
continue
|
|
x1, y1, x2, y2 = x, y, x+w, y+h
|
|
label_local = labels[y1: y2, x1: x2]
|
|
label_coordinates = np.where(label_local==label_index)
|
|
tmp_merged = np.zeros_like(label_local, np.uint8)
|
|
tmp_merged[label_coordinates] = 255
|
|
tmp_merged = cv2.bitwise_or(mask_merged[y1: y2, x1: x2], tmp_merged)
|
|
xor_merged = cv2.bitwise_xor(tmp_merged, pred_mask[y1: y2, x1: x2]).sum()
|
|
xor_origin = cv2.bitwise_xor(mask_merged[y1: y2, x1: x2], pred_mask[y1: y2, x1: x2]).sum()
|
|
if xor_merged < xor_origin:
|
|
mask_merged[y1: y2, x1: x2] = tmp_merged
|
|
|
|
if refine_mode == REFINEMASK_INPAINT:
|
|
mask_merged = cv2.dilate(mask_merged, np.ones((5, 5), np.uint8), iterations=1)
|
|
|
|
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(255-mask_merged, connectivity, cv2.CV_16U)
|
|
sorted_area = np.sort(stats[:, -1])
|
|
if len(sorted_area) > 1:
|
|
area_thresh = sorted_area[-2]
|
|
else:
|
|
area_thresh = sorted_area[-1]
|
|
for label_index, stat, centroid in zip(range(num_labels), stats, centroids):
|
|
x, y, w, h, area = stat
|
|
if area < area_thresh:
|
|
x1, y1, x2, y2 = x, y, x+w, y+h
|
|
label_local = labels[y1: y2, x1: x2]
|
|
label_coordinates = np.where(label_local==label_index)
|
|
tmp_merged = np.zeros_like(label_local, np.uint8)
|
|
tmp_merged[label_coordinates] = 255
|
|
tmp_merged = cv2.bitwise_or(mask_merged[y1: y2, x1: x2], tmp_merged)
|
|
xor_merged = cv2.bitwise_xor(tmp_merged, pred_mask[y1: y2, x1: x2]).sum()
|
|
xor_origin = cv2.bitwise_xor(mask_merged[y1: y2, x1: x2], pred_mask[y1: y2, x1: x2]).sum()
|
|
if xor_merged < xor_origin:
|
|
mask_merged[y1: y2, x1: x2] = tmp_merged
|
|
return mask_merged
|
|
|
|
|
|
def refine_undetected_mask(img: np.ndarray, mask_pred: np.ndarray, mask_refined: np.ndarray, blk_list: List[TextBlock], refine_mode=REFINEMASK_INPAINT):
|
|
mask_pred[np.where(mask_refined > 30)] = 0
|
|
_, pred_mask_t = cv2.threshold(mask_pred, 30, 255, cv2.THRESH_BINARY)
|
|
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(pred_mask_t, 4, cv2.CV_16U)
|
|
valid_labels = np.where(stats[:, -1] > 50)[0]
|
|
seg_blk_list = []
|
|
if len(valid_labels) > 0:
|
|
for lab_index in valid_labels[1:]:
|
|
x, y, w, h, area = stats[lab_index]
|
|
bx1, by1 = x, y
|
|
bx2, by2 = x+w, y+h
|
|
bbox = [bx1, by1, bx2, by2]
|
|
bbox_score = -1
|
|
for blk in blk_list:
|
|
bbox_s = union_area(blk.xyxy, bbox)
|
|
if bbox_s > bbox_score:
|
|
bbox_score = bbox_s
|
|
if bbox_score / w / h < 0.5:
|
|
seg_blk_list.append(TextBlock(bbox))
|
|
if len(seg_blk_list) > 0:
|
|
mask_refined = cv2.bitwise_or(mask_refined, refine_mask(img, mask_pred, seg_blk_list, refine_mode=refine_mode))
|
|
return mask_refined
|
|
|
|
def refine_mask(img: np.ndarray, pred_mask: np.ndarray, blk_list: List[Quadrilateral], refine_mode: int = REFINEMASK_INPAINT) -> np.ndarray:
|
|
mask_refined = np.zeros_like(pred_mask)
|
|
for blk in blk_list:
|
|
bx1, by1, bx2, by2 = enlarge_window(blk.xyxy, img.shape[1], img.shape[0])
|
|
im = np.ascontiguousarray(img[by1: by2, bx1: bx2])
|
|
msk = np.ascontiguousarray(pred_mask[by1: by2, bx1: bx2])
|
|
|
|
mask_list = get_topk_masklist(im, msk)
|
|
mask_list += get_otsuthresh_masklist(im, msk, per_channel=False)
|
|
mask_merged = merge_mask_list(mask_list, msk, blk=blk, text_window=[bx1, by1, bx2, by2], refine_mode=refine_mode)
|
|
mask_refined[by1: by2, bx1: bx2] = cv2.bitwise_or(mask_refined[by1: by2, bx1: bx2], mask_merged)
|
|
|
|
|
|
|
|
|
|
|
|
return mask_refined
|
|
|