|
"""
|
|
Copyright (c) 2019-present NAVER Corp.
|
|
MIT License
|
|
"""
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.autograd import Variable
|
|
from .vgg16_bn import init_weights
|
|
|
|
|
|
class RefineNet(nn.Module):
|
|
def __init__(self):
|
|
super(RefineNet, self).__init__()
|
|
|
|
self.last_conv = nn.Sequential(
|
|
nn.Conv2d(34, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True),
|
|
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True),
|
|
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True)
|
|
)
|
|
|
|
self.aspp1 = nn.Sequential(
|
|
nn.Conv2d(64, 128, kernel_size=3, dilation=6, padding=6), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 1, kernel_size=1)
|
|
)
|
|
|
|
self.aspp2 = nn.Sequential(
|
|
nn.Conv2d(64, 128, kernel_size=3, dilation=12, padding=12), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 1, kernel_size=1)
|
|
)
|
|
|
|
self.aspp3 = nn.Sequential(
|
|
nn.Conv2d(64, 128, kernel_size=3, dilation=18, padding=18), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 1, kernel_size=1)
|
|
)
|
|
|
|
self.aspp4 = nn.Sequential(
|
|
nn.Conv2d(64, 128, kernel_size=3, dilation=24, padding=24), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 1, kernel_size=1)
|
|
)
|
|
|
|
init_weights(self.last_conv.modules())
|
|
init_weights(self.aspp1.modules())
|
|
init_weights(self.aspp2.modules())
|
|
init_weights(self.aspp3.modules())
|
|
init_weights(self.aspp4.modules())
|
|
|
|
def forward(self, y, upconv4):
|
|
refine = torch.cat([y.permute(0,3,1,2), upconv4], dim=1)
|
|
refine = self.last_conv(refine)
|
|
|
|
aspp1 = self.aspp1(refine)
|
|
aspp2 = self.aspp2(refine)
|
|
aspp3 = self.aspp3(refine)
|
|
aspp4 = self.aspp4(refine)
|
|
|
|
|
|
out = aspp1 + aspp2 + aspp3 + aspp4
|
|
return out.permute(0, 2, 3, 1)
|
|
|