File size: 28,295 Bytes
9dce458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
import cv2
import numpy as np
from typing import List, Tuple
from shapely.geometry import Polygon, MultiPoint
from functools import cached_property
import copy
import re
import py3langid as langid
from .generic import color_difference, is_right_to_left_char, is_valuable_char
# from ..detection.ctd_utils.utils.imgproc_utils import union_area, xywh2xyxypoly
# LANG_LIST = ['eng', 'ja', 'unknown']
# LANGCLS2IDX = {'eng': 0, 'ja': 1, 'unknown': 2}
# determines render direction
LANGUAGE_ORIENTATION_PRESETS = {
'CHS': 'auto',
'CHT': 'auto',
'CSY': 'h',
'NLD': 'h',
'ENG': 'h',
'FRA': 'h',
'DEU': 'h',
'HUN': 'h',
'ITA': 'h',
'JPN': 'auto',
'KOR': 'auto',
'PLK': 'h',
'PTB': 'h',
'ROM': 'h',
'RUS': 'h',
'ESP': 'h',
'TRK': 'h',
'UKR': 'h',
'VIN': 'h',
'ARA': 'hr', # horizontal reversed (right to left)
'FIL': 'h'
}
class TextBlock(object):
"""
Object that stores a block of text made up of textlines.
"""
def __init__(self, lines: List,
texts: List[str] = None,
language: str = 'unknown',
font_size: float = -1,
angle: int = 0,
translation: str = "",
fg_color: Tuple[float] = (0, 0, 0),
bg_color: Tuple[float] = (0, 0, 0),
line_spacing = 1.,
letter_spacing = 1.,
font_family: str = "",
bold: bool = False,
underline: bool = False,
italic: bool = False,
direction: str = 'auto',
alignment: str = 'auto',
rich_text: str = "",
_bounding_rect: List = None,
default_stroke_width = 0.2,
font_weight = 50,
source_lang: str = "",
target_lang: str = "",
opacity: float = 1.,
shadow_radius: float = 0.,
shadow_strength: float = 1.,
shadow_color: Tuple = (0, 0, 0),
shadow_offset: List = [0, 0],
prob: float = 1,
**kwargs) -> None:
self.lines = np.array(lines, dtype=np.int32)
# self.lines.sort()
self.language = language
self.font_size = round(font_size)
self.angle = angle
self._direction = direction
self.texts = texts if texts is not None else []
self.text = texts[0]
for txt in texts[1:] :
first_cjk = '\u3000' <= self.text[-1] <= '\u9fff'
second_cjk = '\u3000' <= txt[0] <= '\u9fff'
if first_cjk or second_cjk :
self.text += txt
else :
self.text += ' ' + txt
self.prob = prob
self.translation = translation
self.fg_colors = fg_color
self.bg_colors = bg_color
# self.stroke_width = stroke_width
self.font_family: str = font_family
self.bold: bool = bold
self.underline: bool = underline
self.italic: bool = italic
self.rich_text = rich_text
self.line_spacing = line_spacing
self.letter_spacing = letter_spacing
self._alignment = alignment
self._source_lang = source_lang
self.target_lang = target_lang
self._bounding_rect = _bounding_rect
self.default_stroke_width = default_stroke_width
self.font_weight = font_weight
self.adjust_bg_color = True
self.opacity = opacity
self.shadow_radius = shadow_radius
self.shadow_strength = shadow_strength
self.shadow_color = shadow_color
self.shadow_offset = shadow_offset
@cached_property
def xyxy(self):
"""Coordinates of the bounding box"""
x1 = self.lines[..., 0].min()
y1 = self.lines[..., 1].min()
x2 = self.lines[..., 0].max()
y2 = self.lines[..., 1].max()
return np.array([x1, y1, x2, y2]).astype(np.int32)
@cached_property
def xywh(self):
x1, y1, x2, y2 = self.xyxy
return np.array([x1, y1, x2-x1, y2-y1]).astype(np.int32)
@cached_property
def center(self) -> np.ndarray:
xyxy = np.array(self.xyxy)
return (xyxy[:2] + xyxy[2:]) / 2
@cached_property
def unrotated_polygons(self) -> np.ndarray:
polygons = self.lines.reshape(-1, 8)
if self.angle != 0:
polygons = rotate_polygons(self.center, polygons, self.angle)
return polygons
@cached_property
def unrotated_min_rect(self) -> np.ndarray:
polygons = self.unrotated_polygons
min_x = polygons[:, ::2].min()
min_y = polygons[:, 1::2].min()
max_x = polygons[:, ::2].max()
max_y = polygons[:, 1::2].max()
min_bbox = np.array([[min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]])
return min_bbox.reshape(-1, 4, 2).astype(np.int64)
@cached_property
def min_rect(self) -> np.ndarray:
polygons = self.unrotated_polygons
min_x = polygons[:, ::2].min()
min_y = polygons[:, 1::2].min()
max_x = polygons[:, ::2].max()
max_y = polygons[:, 1::2].max()
min_bbox = np.array([[min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]])
if self.angle != 0:
min_bbox = rotate_polygons(self.center, min_bbox, -self.angle)
return min_bbox.clip(0).reshape(-1, 4, 2).astype(np.int64)
@cached_property
def polygon_aspect_ratio(self) -> float:
"""width / height"""
polygons = self.unrotated_polygons.reshape(-1, 4, 2)
middle_pts = (polygons[:, [1, 2, 3, 0]] + polygons) / 2
norm_v = np.linalg.norm(middle_pts[:, 2] - middle_pts[:, 0], axis=1)
norm_h = np.linalg.norm(middle_pts[:, 1] - middle_pts[:, 3], axis=1)
return np.mean(norm_h / norm_v)
@cached_property
def unrotated_size(self) -> Tuple[int, int]:
"""Returns width and height of unrotated bbox"""
middle_pts = (self.min_rect[:, [1, 2, 3, 0]] + self.min_rect) / 2
norm_h = np.linalg.norm(middle_pts[:, 1] - middle_pts[:, 3])
norm_v = np.linalg.norm(middle_pts[:, 2] - middle_pts[:, 0])
return norm_h, norm_v
@cached_property
def aspect_ratio(self) -> float:
"""width / height"""
return self.unrotated_size[0] / self.unrotated_size[1]
@property
def polygon_object(self) -> Polygon:
min_rect = self.min_rect[0]
return MultiPoint([tuple(min_rect[0]), tuple(min_rect[1]), tuple(min_rect[2]), tuple(min_rect[3])]).convex_hull
@property
def area(self) -> float:
return self.polygon_object.area
@property
def real_area(self) -> float:
lines = self.lines.reshape((-1, 2))
return MultiPoint([tuple(l) for l in lines]).convex_hull.area
def normalized_width_list(self) -> List[float]:
polygons = self.unrotated_polygons
width_list = []
for polygon in polygons:
width_list.append((polygon[[2, 4]] - polygon[[0, 6]]).sum())
width_list = np.array(width_list)
width_list = width_list / np.sum(width_list)
return width_list.tolist()
def __len__(self):
return len(self.lines)
def __getitem__(self, idx):
return self.lines[idx]
def to_dict(self):
blk_dict = copy.deepcopy(vars(self))
return blk_dict
def get_transformed_region(self, img: np.ndarray, line_idx: int, textheight: int, maxwidth: int = None) -> np.ndarray:
src_pts = np.array(self.lines[line_idx], dtype=np.float64)
middle_pnt = (src_pts[[1, 2, 3, 0]] + src_pts) / 2
vec_v = middle_pnt[2] - middle_pnt[0] # vertical vectors of textlines
vec_h = middle_pnt[1] - middle_pnt[3] # horizontal vectors of textlines
ratio = np.linalg.norm(vec_v) / np.linalg.norm(vec_h)
if ratio < 1:
h = int(textheight)
w = int(round(textheight / ratio))
dst_pts = np.array([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]]).astype(np.float32)
M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
region = cv2.warpPerspective(img, M, (w, h))
else:
w = int(textheight)
h = int(round(textheight * ratio))
dst_pts = np.array([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]]).astype(np.float32)
M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
region = cv2.warpPerspective(img, M, (w, h))
region = cv2.rotate(region, cv2.ROTATE_90_COUNTERCLOCKWISE)
if maxwidth is not None:
h, w = region.shape[: 2]
if w > maxwidth:
region = cv2.resize(region, (maxwidth, h))
return region
@property
def source_lang(self):
if not self._source_lang:
self._source_lang = langid.classify(self.text)[0]
return self._source_lang
def get_translation_for_rendering(self):
text = self.translation
if self.direction.endswith('r'):
# The render direction is right to left so left-to-right
# text/number chunks need to be reversed to look normal.
text_list = list(text)
l2r_idx = -1
def reverse_sublist(l, i1, i2):
delta = i2 - i1
for j1 in range(i1, i2 - delta // 2):
j2 = i2 - (j1 - i1) - 1
l[j1], l[j2] = l[j2], l[j1]
for i, c in enumerate(text):
if not is_right_to_left_char(c) and is_valuable_char(c):
if l2r_idx < 0:
l2r_idx = i
elif l2r_idx >= 0 and i - l2r_idx > 1:
# Reverse left-to-right characters for correct rendering
reverse_sublist(text_list, l2r_idx, i)
l2r_idx = -1
if l2r_idx >= 0 and i - l2r_idx > 1:
reverse_sublist(text_list, l2r_idx, len(text_list))
text = ''.join(text_list)
return text
@property
def is_bulleted_list(self):
"""
A determining factor of whether we should be sticking to the strict per textline
text distribution when rendering.
"""
if len(self.texts) <= 1:
return False
bullet_regexes = [
r'[^\w\s]', # β ... β ...
r'[\d]+\.', # 1. ... 2. ...
r'[QA]:', # Q: ... A: ...
]
bullet_type_idx = -1
for line_text in self.texts:
for i, breg in enumerate(bullet_regexes):
if re.search(r'(?:[\n]|^)((?:' + breg + r')[\s]*)', line_text):
if bullet_type_idx >= 0 and bullet_type_idx != i:
return False
bullet_type_idx = i
return bullet_type_idx >= 0
def set_font_colors(self, fg_colors, bg_colors):
self.fg_colors = np.array(fg_colors)
self.bg_colors = np.array(bg_colors)
def update_font_colors(self, fg_colors: np.ndarray, bg_colors: np.ndarray):
nlines = len(self)
if nlines > 0:
self.fg_colors += fg_colors / nlines
self.bg_colors += bg_colors / nlines
def get_font_colors(self, bgr=False):
frgb = np.array(self.fg_colors).astype(np.int32)
brgb = np.array(self.bg_colors).astype(np.int32)
if bgr:
frgb = frgb[::-1]
brgb = brgb[::-1]
if self.adjust_bg_color:
fg_avg = np.mean(frgb)
if color_difference(frgb, brgb) < 30:
brgb = (255, 255, 255) if fg_avg <= 127 else (0, 0, 0)
return frgb, brgb
@property
def direction(self):
"""Render direction determined through used language or aspect ratio."""
if self._direction not in ('h', 'v', 'hr', 'vr'):
d = LANGUAGE_ORIENTATION_PRESETS.get(self.target_lang)
if d in ('h', 'v', 'hr', 'vr'):
return d
if self.aspect_ratio < 1:
return 'v'
else:
return 'h'
return self._direction
@property
def vertical(self):
return self.direction.startswith('v')
@property
def horizontal(self):
return self.direction.startswith('h')
@property
def alignment(self):
"""Render alignment(/gravity) determined through used language."""
if self._alignment in ('left', 'center', 'right'):
return self._alignment
if len(self.lines) == 1:
return 'center'
if self.direction == 'h':
return 'center'
elif self.direction == 'hr':
return 'right'
else:
return 'left'
# x1, y1, x2, y2 = self.xyxy
# polygons = self.unrotated_polygons
# polygons = polygons.reshape(-1, 4, 2)
# print(self.polygon_aspect_ratio, self.xyxy)
# print(polygons[:, :, 0] - x1)
# print()
# if self.polygon_aspect_ratio < 1:
# left_std = abs(np.std(polygons[:, :2, 1] - y1))
# right_std = abs(np.std(polygons[:, 2:, 1] - y2))
# center_std = abs(np.std(((polygons[:, :, 1] + polygons[:, :, 1]) - (y2 - y1)) / 2))
# print(center_std)
# print('a', left_std, right_std, center_std)
# else:
# left_std = abs(np.std(polygons[:, ::2, 0] - x1))
# right_std = abs(np.std(polygons[:, 2:, 0] - x2))
# center_std = abs(np.std(((polygons[:, :, 0] + polygons[:, :, 0]) - (x2 - x1)) / 2))
# min_std = min(left_std, right_std, center_std)
# if left_std == min_std:
# return 'left'
# elif right_std == min_std:
# return 'right'
# else:
# return 'center'
@property
def stroke_width(self):
diff = color_difference(*self.get_font_colors())
if diff > 15:
return self.default_stroke_width
return 0
def rotate_polygons(center, polygons, rotation, new_center=None, to_int=True):
if rotation == 0:
return polygons
if new_center is None:
new_center = center
rotation = np.deg2rad(rotation)
s, c = np.sin(rotation), np.cos(rotation)
polygons = polygons.astype(np.float32)
polygons[:, 1::2] -= center[1]
polygons[:, ::2] -= center[0]
rotated = np.copy(polygons)
rotated[:, 1::2] = polygons[:, 1::2] * c - polygons[:, ::2] * s
rotated[:, ::2] = polygons[:, 1::2] * s + polygons[:, ::2] * c
rotated[:, 1::2] += new_center[1]
rotated[:, ::2] += new_center[0]
if to_int:
return rotated.astype(np.int64)
return rotated
def sort_regions(regions: List[TextBlock], right_to_left=True) -> List[TextBlock]:
# Sort regions from right to left, top to bottom
sorted_regions = []
for region in sorted(regions, key=lambda region: region.center[1]):
for i, sorted_region in enumerate(sorted_regions):
if region.center[1] > sorted_region.xyxy[3]:
continue
if region.center[1] < sorted_region.xyxy[1]:
sorted_regions.insert(i + 1, region)
break
# y center of region inside sorted_region so sort by x instead
if right_to_left and region.center[0] > sorted_region.center[0]:
sorted_regions.insert(i, region)
break
if not right_to_left and region.center[0] < sorted_region.center[0]:
sorted_regions.insert(i, region)
break
else:
sorted_regions.append(region)
return sorted_regions
# def sort_textblk_list(blk_list: List[TextBlock], im_w: int, im_h: int) -> List[TextBlock]:
# if len(blk_list) == 0:
# return blk_list
# num_ja = 0
# xyxy = []
# for blk in blk_list:
# if blk.language == 'ja':
# num_ja += 1
# xyxy.append(blk.xyxy)
# xyxy = np.array(xyxy)
# flip_lr = num_ja > len(blk_list) / 2
# im_oriw = im_w
# if im_w > im_h:
# im_w /= 2
# num_gridy, num_gridx = 4, 3
# img_area = im_h * im_w
# center_x = (xyxy[:, 0] + xyxy[:, 2]) / 2
# if flip_lr:
# if im_w != im_oriw:
# center_x = im_oriw - center_x
# else:
# center_x = im_w - center_x
# grid_x = (center_x / im_w * num_gridx).astype(np.int32)
# center_y = (xyxy[:, 1] + xyxy[:, 3]) / 2
# grid_y = (center_y / im_h * num_gridy).astype(np.int32)
# grid_indices = grid_y * num_gridx + grid_x
# grid_weights = grid_indices * img_area + 1.2 * (center_x - grid_x * im_w / num_gridx) + (center_y - grid_y * im_h / num_gridy)
# if im_w != im_oriw:
# grid_weights[np.where(grid_x >= num_gridx)] += img_area * num_gridy * num_gridx
# for blk, weight in zip(blk_list, grid_weights):
# blk.sort_weight = weight
# blk_list.sort(key=lambda blk: blk.sort_weight)
# return blk_list
# # TODO: Make these cached_properties
# def examine_textblk(blk: TextBlock, im_w: int, im_h: int, sort: bool = False) -> None:
# lines = blk.lines_array()
# middle_pnts = (lines[:, [1, 2, 3, 0]] + lines) / 2
# vec_v = middle_pnts[:, 2] - middle_pnts[:, 0] # vertical vectors of textlines
# vec_h = middle_pnts[:, 1] - middle_pnts[:, 3] # horizontal vectors of textlines
# # if sum of vertical vectors is longer, then text orientation is vertical, and vice versa.
# center_pnts = (lines[:, 0] + lines[:, 2]) / 2
# v = np.sum(vec_v, axis=0)
# h = np.sum(vec_h, axis=0)
# norm_v, norm_h = np.linalg.norm(v), np.linalg.norm(h)
# if blk.language == 'ja':
# vertical = norm_v > norm_h
# else:
# vertical = norm_v > norm_h * 2
# # calculate distance between textlines and origin
# if vertical:
# primary_vec, primary_norm = v, norm_v
# distance_vectors = center_pnts - np.array([[im_w, 0]], dtype=np.float64) # vertical manga text is read from right to left, so origin is (imw, 0)
# font_size = int(round(norm_h / len(lines)))
# else:
# primary_vec, primary_norm = h, norm_h
# distance_vectors = center_pnts - np.array([[0, 0]], dtype=np.float64)
# font_size = int(round(norm_v / len(lines)))
# rotation_angle = int(math.atan2(primary_vec[1], primary_vec[0]) / math.pi * 180) # rotation angle of textlines
# distance = np.linalg.norm(distance_vectors, axis=1) # distance between textlinecenters and origin
# rad_matrix = np.arccos(np.einsum('ij, j->i', distance_vectors, primary_vec) / (distance * primary_norm))
# distance = np.abs(np.sin(rad_matrix) * distance)
# blk.lines = lines.astype(np.int32).tolist()
# blk.distance = distance
# blk.angle = rotation_angle
# if vertical:
# blk.angle -= 90
# if abs(blk.angle) < 3:
# blk.angle = 0
# blk.font_size = font_size
# blk.vertical = vertical
# blk.vec = primary_vec
# blk.norm = primary_norm
# if sort:
# blk.sort_lines()
# def try_merge_textline(blk: TextBlock, blk2: TextBlock, fntsize_tol=1.4, distance_tol=2) -> bool:
# if blk2.merged:
# return False
# fntsize_div = blk.font_size / blk2.font_size
# num_l1, num_l2 = len(blk), len(blk2)
# fntsz_avg = (blk.font_size * num_l1 + blk2.font_size * num_l2) / (num_l1 + num_l2)
# vec_prod = blk.vec @ blk2.vec
# vec_sum = blk.vec + blk2.vec
# cos_vec = vec_prod / blk.norm / blk2.norm
# distance = blk2.distance[-1] - blk.distance[-1]
# distance_p1 = np.linalg.norm(np.array(blk2.lines[-1][0]) - np.array(blk.lines[-1][0]))
# l1, l2 = Polygon(blk.lines[-1]), Polygon(blk2.lines[-1])
# if not l1.intersects(l2):
# if fntsize_div > fntsize_tol or 1 / fntsize_div > fntsize_tol:
# return False
# if abs(cos_vec) < 0.866: # cos30
# return False
# # if distance > distance_tol * fntsz_avg or distance_p1 > fntsz_avg * 2.5:
# if distance > distance_tol * fntsz_avg:
# return False
# if blk.vertical and blk2.vertical and distance_p1 > fntsz_avg * 2.5:
# return False
# # merge
# blk.lines.append(blk2.lines[0])
# blk.vec = vec_sum
# blk.angle = int(round(np.rad2deg(math.atan2(vec_sum[1], vec_sum[0]))))
# if blk.vertical:
# blk.angle -= 90
# blk.norm = np.linalg.norm(vec_sum)
# blk.distance = np.append(blk.distance, blk2.distance[-1])
# blk.font_size = fntsz_avg
# blk2.merged = True
# return True
# def merge_textlines(blk_list: List[TextBlock]) -> List[TextBlock]:
# if len(blk_list) < 2:
# return blk_list
# blk_list.sort(key=lambda blk: blk.distance[0])
# merged_list = []
# for ii, current_blk in enumerate(blk_list):
# if current_blk.merged:
# continue
# for jj, blk in enumerate(blk_list[ii+1:]):
# try_merge_textline(current_blk, blk)
# merged_list.append(current_blk)
# for blk in merged_list:
# blk.adjust_bbox(with_bbox=False)
# return merged_list
# def split_textblk(blk: TextBlock):
# font_size, distance, lines = blk.font_size, blk.distance, blk.lines
# l0 = np.array(blk.lines[0])
# lines.sort(key=lambda line: np.linalg.norm(np.array(line[0]) - l0[0]))
# distance_tol = font_size * 2
# current_blk = copy.deepcopy(blk)
# current_blk.lines = [l0]
# sub_blk_list = [current_blk]
# textblock_splitted = False
# for jj, line in enumerate(lines[1:]):
# l1, l2 = Polygon(lines[jj]), Polygon(line)
# split = False
# if not l1.intersects(l2):
# line_disance = abs(distance[jj+1] - distance[jj])
# if line_disance > distance_tol:
# split = True
# elif blk.vertical and abs(blk.angle) < 15:
# if len(current_blk.lines) > 1 or line_disance > font_size:
# split = abs(lines[jj][0][1] - line[0][1]) > font_size
# if split:
# current_blk = copy.deepcopy(current_blk)
# current_blk.lines = [line]
# sub_blk_list.append(current_blk)
# else:
# current_blk.lines.append(line)
# if len(sub_blk_list) > 1:
# textblock_splitted = True
# for current_blk in sub_blk_list:
# current_blk.adjust_bbox(with_bbox=False)
# return textblock_splitted, sub_blk_list
# def group_output(blks, lines, im_w, im_h, mask=None, sort_blklist=True) -> List[TextBlock]:
# blk_list: List[TextBlock] = []
# scattered_lines = {'ver': [], 'hor': []}
# for bbox, lang_id, conf in zip(*blks):
# # cls could give wrong result
# blk_list.append(TextBlock(bbox, language=LANG_LIST[lang_id]))
# # step1: filter & assign lines to textblocks
# bbox_score_thresh = 0.4
# mask_score_thresh = 0.1
# for line in lines:
# bx1, bx2 = line[:, 0].min(), line[:, 0].max()
# by1, by2 = line[:, 1].min(), line[:, 1].max()
# bbox_score, bbox_idx = -1, -1
# line_area = (by2-by1) * (bx2-bx1)
# for i, blk in enumerate(blk_list):
# score = union_area(blk.xyxy, [bx1, by1, bx2, by2]) / line_area
# if bbox_score < score:
# bbox_score = score
# bbox_idx = i
# if bbox_score > bbox_score_thresh:
# blk_list[bbox_idx].lines.append(line)
# else: # if no textblock was assigned, check whether there is "enough" textmask
# if mask is not None:
# mask_score = mask[by1: by2, bx1: bx2].mean() / 255
# if mask_score < mask_score_thresh:
# continue
# blk = TextBlock([bx1, by1, bx2, by2], [line])
# examine_textblk(blk, im_w, im_h, sort=False)
# if blk.vertical:
# scattered_lines['ver'].append(blk)
# else:
# scattered_lines['hor'].append(blk)
# # step2: filter textblocks, sort & split textlines
# final_blk_list = []
# for blk in blk_list:
# # filter textblocks
# if len(blk.lines) == 0:
# bx1, by1, bx2, by2 = blk.xyxy
# if mask is not None:
# mask_score = mask[by1: by2, bx1: bx2].mean() / 255
# if mask_score < mask_score_thresh:
# continue
# xywh = np.array([[bx1, by1, bx2-bx1, by2-by1]])
# blk.lines = xywh2xyxypoly(xywh).reshape(-1, 4, 2).tolist()
# examine_textblk(blk, im_w, im_h, sort=True)
# # split manga text if there is a distance gap
# textblock_splitted = False
# if len(blk.lines) > 1:
# if blk.language == 'ja':
# textblock_splitted = True
# elif blk.vertical:
# textblock_splitted = True
# if textblock_splitted:
# textblock_splitted, sub_blk_list = split_textblk(blk)
# else:
# sub_blk_list = [blk]
# # modify textblock to fit its textlines
# if not textblock_splitted:
# for blk in sub_blk_list:
# blk.adjust_bbox(with_bbox=True)
# final_blk_list += sub_blk_list
# # step3: merge scattered lines, sort textblocks by "grid"
# final_blk_list += merge_textlines(scattered_lines['hor'])
# final_blk_list += merge_textlines(scattered_lines['ver'])
# if sort_blklist:
# final_blk_list = sort_textblk_list(final_blk_list, im_w, im_h)
# for blk in final_blk_list:
# if blk.language != 'ja' and not blk.vertical:
# num_lines = len(blk.lines)
# if num_lines == 0:
# continue
# # blk.line_spacing = blk.bounding_rect()[3] / num_lines / blk.font_size
# expand_size = max(int(blk.font_size * 0.1), 3)
# rad = np.deg2rad(blk.angle)
# shifted_vec = np.array([[[-1, -1],[1, -1],[1, 1],[-1, 1]]])
# shifted_vec = shifted_vec * np.array([[[np.sin(rad), np.cos(rad)]]]) * expand_size
# lines = blk.lines_array() + shifted_vec
# lines[..., 0] = np.clip(lines[..., 0], 0, im_w-1)
# lines[..., 1] = np.clip(lines[..., 1], 0, im_h-1)
# blk.lines = lines.astype(np.int64).tolist()
# blk.font_size += expand_size
# return final_blk_list
def visualize_textblocks(canvas, blk_list: List[TextBlock]):
lw = max(round(sum(canvas.shape) / 2 * 0.003), 2) # line width
for i, blk in enumerate(blk_list):
bx1, by1, bx2, by2 = blk.xyxy
cv2.rectangle(canvas, (bx1, by1), (bx2, by2), (127, 255, 127), lw)
for j, line in enumerate(blk.lines):
cv2.putText(canvas, str(j), line[0], cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,127,0), 1)
cv2.polylines(canvas, [line], True, (0,127,255), 2)
cv2.polylines(canvas, [blk.min_rect], True, (127,127,0), 2)
cv2.putText(canvas, str(i), (bx1, by1 + lw), 0, lw / 3, (255,127,127), max(lw-1, 1), cv2.LINE_AA)
center = [int((bx1 + bx2)/2), int((by1 + by2)/2)]
cv2.putText(canvas, 'a: %.2f' % blk.angle, [bx1, center[1]], cv2.FONT_HERSHEY_SIMPLEX, 1, (127,127,255), 2)
cv2.putText(canvas, 'x: %s' % bx1, [bx1, center[1] + 30], cv2.FONT_HERSHEY_SIMPLEX, 1, (127,127,255), 2)
cv2.putText(canvas, 'y: %s' % by1, [bx1, center[1] + 60], cv2.FONT_HERSHEY_SIMPLEX, 1, (127,127,255), 2)
return canvas
|