File size: 8,602 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

from typing import Tuple, List
import numpy as np
import cv2
import math

from tqdm import tqdm
from shapely.geometry import Polygon
# from sklearn.mixture import BayesianGaussianMixture
# from functools import reduce
# from collections import defaultdict
# from scipy.optimize import linear_sum_assignment

from ..utils import Quadrilateral, image_resize

COLOR_RANGE_SIGMA = 1.5 # how many stddev away is considered the same color

def save_rgb(fn, img):
    if len(img.shape) == 3 and img.shape[2] == 3:
        cv2.imwrite(fn, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
    else:
        cv2.imwrite(fn, img)

def area_overlap(x1, y1, w1, h1, x2, y2, w2, h2):  # returns None if rectangles don't intersect
    x_overlap = max(0, min(x1 + w1, x2 + w2) - max(x1, x2))
    y_overlap = max(0, min(y1 + h1, y2 + h2) - max(y1, y2))
    return x_overlap * y_overlap

def dist(x1, y1, x2, y2):
    return math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))

def rect_distance(x1, y1, x1b, y1b, x2, y2, x2b, y2b):
    left = x2b < x1
    right = x1b < x2
    bottom = y2b < y1
    top = y1b < y2
    if top and left:
        return dist(x1, y1b, x2b, y2)
    elif left and bottom:
        return dist(x1, y1, x2b, y2b)
    elif bottom and right:
        return dist(x1b, y1, x2, y2b)
    elif right and top:
        return dist(x1b, y1b, x2, y2)
    elif left:
        return x1 - x2b
    elif right:
        return x2 - x1b
    elif bottom:
        return y1 - y2b
    elif top:
        return y2 - y1b
    else:             # rectangles intersect
        return 0
    
def extend_rect(x, y, w, h, max_x, max_y, extend_size):
    x1 = max(x - extend_size, 0)
    y1 = max(y - extend_size, 0)
    w1 = min(w + extend_size * 2, max_x - x1 - 1)
    h1 = min(h + extend_size * 2, max_y - y1 - 1)
    return x1, y1, w1, h1

def complete_mask_fill(text_lines: List[Tuple[int, int, int, int]]):
    for (x, y, w, h) in text_lines:
        final_mask = cv2.rectangle(final_mask, (x, y), (x + w, y + h), (255), -1)
    return final_mask

from pydensecrf.utils import compute_unary, unary_from_softmax
import pydensecrf.densecrf as dcrf

def refine_mask(rgbimg, rawmask):
    if len(rawmask.shape) == 2:
        rawmask = rawmask[:, :, None]
    mask_softmax = np.concatenate([cv2.bitwise_not(rawmask)[:, :, None], rawmask], axis=2)
    mask_softmax = mask_softmax.astype(np.float32) / 255.0
    n_classes = 2
    feat_first = mask_softmax.transpose((2, 0, 1)).reshape((n_classes,-1))
    unary = unary_from_softmax(feat_first)
    unary = np.ascontiguousarray(unary)

    d = dcrf.DenseCRF2D(rgbimg.shape[1], rgbimg.shape[0], n_classes)

    d.setUnaryEnergy(unary)
    d.addPairwiseGaussian(sxy=1, compat=3, kernel=dcrf.DIAG_KERNEL,
                            normalization=dcrf.NO_NORMALIZATION)

    d.addPairwiseBilateral(sxy=23, srgb=7, rgbim=rgbimg,
                        compat=20,
                        kernel=dcrf.DIAG_KERNEL,
                        normalization=dcrf.NO_NORMALIZATION)
    Q = d.inference(5)
    res = np.argmax(Q, axis=0).reshape((rgbimg.shape[0], rgbimg.shape[1]))
    crf_mask = np.array(res * 255, dtype=np.uint8)
    return crf_mask

def complete_mask(img: np.ndarray, mask: np.ndarray, textlines: List[Quadrilateral], keep_threshold = 1e-2, dilation_offset = 0,kernel_size=3):
    bboxes = [txtln.aabb.xywh for txtln in textlines]
    polys = [Polygon(txtln.pts) for txtln in textlines]
    for (x, y, w, h) in bboxes:
        cv2.rectangle(mask, (x, y), (x + w, y + h), (0), 1)
    num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(mask)

    M = len(textlines)
    textline_ccs = [np.zeros_like(mask) for _ in range(M)]
    iinfo = np.iinfo(labels.dtype)
    textline_rects = np.full(shape = (M, 4), fill_value = [iinfo.max, iinfo.max, iinfo.min, iinfo.min], dtype = labels.dtype)
    ratio_mat = np.zeros(shape = (num_labels, M), dtype = np.float32)
    dist_mat = np.zeros(shape = (num_labels, M), dtype = np.float32)
    valid = False
    for label in range(1, num_labels):
        # skip area too small
        if stats[label, cv2.CC_STAT_AREA] <= 9:
            continue

        x1 = stats[label, cv2.CC_STAT_LEFT]
        y1 = stats[label, cv2.CC_STAT_TOP]
        w1 = stats[label, cv2.CC_STAT_WIDTH]
        h1 = stats[label, cv2.CC_STAT_HEIGHT]
        area1 = stats[label, cv2.CC_STAT_AREA]
        cc_pts = np.array([[x1, y1], [x1 + w1, y1], [x1 + w1, y1 + h1], [x1, y1 + h1]])
        cc_poly = Polygon(cc_pts)

        for tl_idx in range(M):
            area2 = polys[tl_idx].area
            overlapping_area = polys[tl_idx].intersection(cc_poly).area
            ratio_mat[label, tl_idx] = overlapping_area / min(area1, area2)
            dist_mat[label, tl_idx] = polys[tl_idx].distance(cc_poly.centroid)
            # print(textlines[tl_idx].pts, cc_pts, '->', overlapping_area, min(area1, area2), '=', overlapping_area / min(area1, area2), '|', polys[tl_idx].distance(cc_poly))

        avg = np.argmax(ratio_mat[label])
        # print(avg, 'overlap:', ratio_mat[label, avg], '<=', keep_threshold)
        area2 = polys[avg].area
        if area1 >= area2:
            continue
        if ratio_mat[label, avg] <= keep_threshold:
            avg = np.argmin(dist_mat[label])
            area2 = polys[avg].area
            unit = max(min([textlines[avg].font_size, w1, h1]), 10)
            # print("unit", unit, textlines[avg].font_size, w1, h1)
            # if area1 < 0.4 * w1 * h1:
            #     # ccs is probably angled
            #     unit /= 2
            # if avg == 0:
            # print('no intersect', area1, '>=', area2, dist_mat[label, avg], '>=', 0.5 * unit)
            if dist_mat[label, avg] >= 0.5 * unit:
                # print(dist_mat[label])
                # print('CONTINUE')
                continue

        textline_ccs[avg][y1:y1+h1, x1:x1+w1][labels[y1:y1+h1, x1:x1+w1] == label] = 255
        # if avg == 0:
        # print(avg)
        # cv2.imshow('ccs', image_resize(textline_ccs[avg], height = 800))
        # cv2.waitKey(0)
        textline_rects[avg, 0] = min(textline_rects[avg, 0], x1)
        textline_rects[avg, 1] = min(textline_rects[avg, 1], y1)
        textline_rects[avg, 2] = max(textline_rects[avg, 2], x1 + w1)
        textline_rects[avg, 3] = max(textline_rects[avg, 3], y1 + h1)
        valid = True

    if not valid:
        return None
    
    # tblr to xywh
    textline_rects[:, 2] -= textline_rects[:, 0]
    textline_rects[:, 3] -= textline_rects[:, 1]
    
    final_mask = np.zeros_like(mask)
    img = cv2.bilateralFilter(img, 17, 80, 80)
    for i, cc in enumerate(tqdm(textline_ccs, '[mask]')):
        x1, y1, w1, h1 = textline_rects[i]
        text_size = min(w1, h1, textlines[i].font_size)
        x1, y1, w1, h1 = extend_rect(x1, y1, w1, h1, img.shape[1], img.shape[0], int(text_size * 0.1))
        # TODO: Need to think of better way to determine dilate_size.
        dilate_size = max((int((text_size + dilation_offset) * 0.3) // 2) * 2 + 1, 3)
        # print(textlines[i].font_size, min(w1, h1), dilate_size)
        kern = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (dilate_size, dilate_size))
        cc_region = np.ascontiguousarray(cc[y1: y1 + h1, x1: x1 + w1])
        if cc_region.size == 0:
            continue
        # cv2.imshow('cc before', image_resize(cc_region, height = 800))
        img_region = np.ascontiguousarray(img[y1: y1 + h1, x1: x1 + w1])
        # cv2.imshow('img', image_resize(img_region, height = 800))
        cc_region = refine_mask(img_region, cc_region)
        # cv2.imshow('cc after', image_resize(cc_region, height = 800))
        # cv2.waitKey(0)
        cc[y1: y1 + h1, x1: x1 + w1] = cc_region
        # cc = cv2.dilate(cc, kern)
        x2, y2, w2, h2 = extend_rect(x1, y1, w1, h1, img.shape[1], img.shape[0], -(-dilate_size // 2))
        cc[y2:y2+h2, x2:x2+w2] = cv2.dilate(cc[y2:y2+h2, x2:x2+w2], kern)
        final_mask[y2:y2+h2, x2:x2+w2] = cv2.bitwise_or(final_mask[y2:y2+h2, x2:x2+w2], cc[y2:y2+h2, x2:x2+w2])
    kern = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
    # for (x, y, w, h) in text_lines:
    #     final_mask = cv2.rectangle(final_mask, (x, y), (x + w, y + h), (255), -1)
    return cv2.dilate(final_mask, kern)

def unsharp(image):
    gaussian_3 = cv2.GaussianBlur(image, (3, 3), 2.0)
    return cv2.addWeighted(image, 1.5, gaussian_3, -0.5, 0, image)