File size: 32,057 Bytes
9dce458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
# Lama with Masking Positional Encoding
# original implementation https://github.com/DQiaole/ZITS_inpainting.git
# paper https://arxiv.org/pdf/2203.00867.pdf
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
import os
import shutil
from torch import Tensor
from .common import OfflineInpainter
from ..utils import resize_keep_aspect
TORCH_DTYPE_MAP = {
'fp32': torch.float32,
'fp16': torch.float16,
'bf16': torch.bfloat16,
}
class LamaMPEInpainter(OfflineInpainter):
'''
Better mark as deprecated and replace with lama large
'''
_MODEL_MAPPING = {
'model': {
'url': 'https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.3/inpainting_lama_mpe.ckpt',
'hash': 'd625aa1b3e0d0408acfd6928aa84f005867aa8dbb9162480346a4e20660786cc',
'file': '.',
},
}
def __init__(self, *args, **kwargs):
os.makedirs(self.model_dir, exist_ok=True)
if os.path.exists('inpainting_lama_mpe.ckpt'):
shutil.move('inpainting_lama_mpe.ckpt', self._get_file_path('inpainting_lama_mpe.ckpt'))
super().__init__(*args, **kwargs)
async def _load(self, device: str):
self.model = load_lama_mpe(self._get_file_path('inpainting_lama_mpe.ckpt'), device='cpu')
self.model.eval()
self.device = device
if device.startswith('cuda') or device == 'mps':
self.model.to(device)
async def _unload(self):
del self.model
async def _infer(self, image: np.ndarray, mask: np.ndarray, inpainting_size: int = 1024, verbose: bool = False) -> np.ndarray:
img_original = np.copy(image)
mask_original = np.copy(mask)
mask_original[mask_original < 127] = 0
mask_original[mask_original >= 127] = 1
mask_original = mask_original[:, :, None]
height, width, c = image.shape
if max(image.shape[0: 2]) > inpainting_size:
image = resize_keep_aspect(image, inpainting_size)
mask = resize_keep_aspect(mask, inpainting_size)
pad_size = 8
h, w, c = image.shape
if h % pad_size != 0:
new_h = (pad_size - (h % pad_size)) + h
else:
new_h = h
if w % pad_size != 0:
new_w = (pad_size - (w % pad_size)) + w
else:
new_w = w
if new_h != h or new_w != w:
image = cv2.resize(image, (new_w, new_h), interpolation = cv2.INTER_LINEAR)
mask = cv2.resize(mask, (new_w, new_h), interpolation = cv2.INTER_LINEAR)
self.logger.info(f'Inpainting resolution: {new_w}x{new_h}')
if isinstance(self.model, LamaFourier):
img_torch = torch.from_numpy(image).permute(2, 0, 1).unsqueeze_(0).float() / 255.
else:
img_torch = torch.from_numpy(image).permute(2, 0, 1).unsqueeze_(0).float() / 127.5 - 1.0
mask_torch = torch.from_numpy(mask).unsqueeze_(0).unsqueeze_(0).float() / 255.0
mask_torch[mask_torch < 0.5] = 0
mask_torch[mask_torch >= 0.5] = 1
if self.device.startswith('cuda') or self.device == 'mps':
img_torch = img_torch.to(self.device)
mask_torch = mask_torch.to(self.device)
with torch.no_grad():
img_torch *= (1 - mask_torch)
if not (self.device.startswith('cuda')):
# mps devices here
img_inpainted_torch = self.model(img_torch, mask_torch)
else:
# Note: lama's weight shouldn't be convert to fp16 or bf16 otherwise it produces darkened results.
# but it can inference under torch.autocast
precision = TORCH_DTYPE_MAP[os.environ.get("INPAINTING_PRECISION", "fp32")]
if precision == torch.float16:
precision = torch.bfloat16
self.logger.warning('Switch to bf16 due to Lama only compatible with bf16 and fp32.')
with torch.autocast(device_type="cuda", dtype=precision):
img_inpainted_torch = self.model(img_torch, mask_torch)
if isinstance(self.model, LamaFourier):
img_inpainted = (img_inpainted_torch.cpu().squeeze_(0).permute(1, 2, 0).numpy() * 255.).astype(np.uint8)
else:
img_inpainted = ((img_inpainted_torch.cpu().squeeze_(0).permute(1, 2, 0).numpy() + 1.0) * 127.5).astype(np.uint8)
if new_h != height or new_w != width:
img_inpainted = cv2.resize(img_inpainted, (width, height), interpolation = cv2.INTER_LINEAR)
ans = img_inpainted * mask_original + img_original * (1 - mask_original)
return ans
class LamaLargeInpainter(LamaMPEInpainter):
_MODEL_MAPPING = {
'model': {
'url': 'https://huggingface.co/dreMaz/AnimeMangaInpainting/resolve/main/lama_large_512px.ckpt',
'hash': '11d30fbb3000fb2eceae318b75d9ced9229d99ae990a7f8b3ac35c8d31f2c935',
'file': '.',
},
}
async def _load(self, device: str):
self.model = load_lama_mpe(self._get_file_path('lama_large_512px.ckpt'), device='cpu', use_mpe=False, large_arch=True)
self.model.eval()
self.device = device
if device.startswith('cuda') or device == 'mps':
self.model.to(device)
def set_requires_grad(module, value):
for param in module.parameters():
param.requires_grad = value
def get_activation(kind='tanh'):
if kind == 'tanh':
return nn.Tanh()
if kind == 'sigmoid':
return nn.Sigmoid()
if kind is False:
return nn.Identity()
raise ValueError(f'Unknown activation kind {kind}')
class FFCSE_block(nn.Module):
def __init__(self, channels, ratio_g):
super(FFCSE_block, self).__init__()
in_cg = int(channels * ratio_g)
in_cl = channels - in_cg
r = 16
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.conv1 = nn.Conv2d(channels, channels // r,
kernel_size=1, bias=True)
self.relu1 = nn.ReLU(inplace=True)
self.conv_a2l = None if in_cl == 0 else nn.Conv2d(
channels // r, in_cl, kernel_size=1, bias=True)
self.conv_a2g = None if in_cg == 0 else nn.Conv2d(
channels // r, in_cg, kernel_size=1, bias=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = x if type(x) is tuple else (x, 0)
id_l, id_g = x
x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1)
x = self.avgpool(x)
x = self.relu1(self.conv1(x))
x_l = 0 if self.conv_a2l is None else id_l * \
self.sigmoid(self.conv_a2l(x))
x_g = 0 if self.conv_a2g is None else id_g * \
self.sigmoid(self.conv_a2g(x))
return x_l, x_g
class FourierUnit(nn.Module):
def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',
spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
# bn_layer not used
super(FourierUnit, self).__init__()
self.groups = groups
self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
out_channels=out_channels * 2,
kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
self.bn = torch.nn.BatchNorm2d(out_channels * 2)
self.relu = torch.nn.ReLU(inplace=True)
# squeeze and excitation block
self.use_se = use_se
# if use_se:
# if se_kwargs is None:
# se_kwargs = {}
# self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
self.spatial_scale_factor = spatial_scale_factor
self.spatial_scale_mode = spatial_scale_mode
self.spectral_pos_encoding = spectral_pos_encoding
self.ffc3d = ffc3d
self.fft_norm = fft_norm
def forward(self, x):
batch = x.shape[0]
if self.spatial_scale_factor is not None:
orig_size = x.shape[-2:]
x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False)
r_size = x.size()
# (batch, c, h, w/2+1, 2)
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
if x.dtype in (torch.float16, torch.bfloat16):
x = x.type(torch.float32)
ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
ffted = ffted.view((batch, -1,) + ffted.size()[3:])
if self.spectral_pos_encoding:
height, width = ffted.shape[-2:]
coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
if self.use_se:
ffted = self.se(ffted)
ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
ffted = self.relu(self.bn(ffted))
ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2)
if ffted.dtype in (torch.float16, torch.bfloat16):
ffted = ffted.type(torch.float32)
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)
if self.spatial_scale_factor is not None:
output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)
return output
class SpectralTransform(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs):
# bn_layer not used
super(SpectralTransform, self).__init__()
self.enable_lfu = enable_lfu
if stride == 2:
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
else:
self.downsample = nn.Identity()
self.stride = stride
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels //
2, kernel_size=1, groups=groups, bias=False),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU(inplace=True)
)
self.fu = FourierUnit(
out_channels // 2, out_channels // 2, groups, **fu_kwargs)
if self.enable_lfu:
self.lfu = FourierUnit(
out_channels // 2, out_channels // 2, groups)
self.conv2 = torch.nn.Conv2d(
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)
def forward(self, x):
x = self.downsample(x)
x = self.conv1(x)
output = self.fu(x)
if self.enable_lfu:
n, c, h, w = x.shape
split_no = 2
split_s = h // split_no
xs = torch.cat(torch.split(
x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
xs = torch.cat(torch.split(xs, split_s, dim=-1),
dim=1).contiguous()
xs = self.lfu(xs)
xs = xs.repeat(1, 1, split_no, split_no).contiguous()
else:
xs = 0
output = self.conv2(x + output + xs)
return output
class FFC(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
ratio_gin, ratio_gout, stride=1, padding=0,
dilation=1, groups=1, bias=False, enable_lfu=True,
padding_type='reflect', gated=False, **spectral_kwargs):
super(FFC, self).__init__()
assert stride == 1 or stride == 2, "Stride should be 1 or 2."
self.stride = stride
in_cg = int(in_channels * ratio_gin)
in_cl = in_channels - in_cg
out_cg = int(out_channels * ratio_gout)
out_cl = out_channels - out_cg
#groups_g = 1 if groups == 1 else int(groups * ratio_gout)
#groups_l = 1 if groups == 1 else groups - groups_g
self.ratio_gin = ratio_gin
self.ratio_gout = ratio_gout
self.global_in_num = in_cg
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
self.convl2l = module(in_cl, out_cl, kernel_size,
stride, padding, dilation, groups, bias, padding_mode=padding_type)
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
self.convl2g = module(in_cl, out_cg, kernel_size,
stride, padding, dilation, groups, bias, padding_mode=padding_type)
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
self.convg2l = module(in_cg, out_cl, kernel_size,
stride, padding, dilation, groups, bias, padding_mode=padding_type)
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
self.convg2g = module(
in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)
self.gated = gated
module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
self.gate = module(in_channels, 2, 1)
def forward(self, x):
x_l, x_g = x if type(x) is tuple else (x, 0)
out_xl, out_xg = 0, 0
if self.gated:
total_input_parts = [x_l]
if torch.is_tensor(x_g):
total_input_parts.append(x_g)
total_input = torch.cat(total_input_parts, dim=1)
gates = torch.sigmoid(self.gate(total_input))
g2l_gate, l2g_gate = gates.chunk(2, dim=1)
else:
g2l_gate, l2g_gate = 1, 1
if self.ratio_gout != 1:
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
if self.ratio_gout != 0:
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
return out_xl, out_xg
class FFC_BN_ACT(nn.Module):
def __init__(self, in_channels, out_channels,
kernel_size, ratio_gin, ratio_gout,
stride=1, padding=0, dilation=1, groups=1, bias=False,
norm_layer=nn.BatchNorm2d, activation_layer=nn.Identity,
padding_type='reflect',
enable_lfu=True, **kwargs):
super(FFC_BN_ACT, self).__init__()
self.ffc = FFC(in_channels, out_channels, kernel_size,
ratio_gin, ratio_gout, stride, padding, dilation,
groups, bias, enable_lfu, padding_type=padding_type, **kwargs)
lnorm = nn.Identity if ratio_gout == 1 else norm_layer
gnorm = nn.Identity if ratio_gout == 0 else norm_layer
global_channels = int(out_channels * ratio_gout)
self.bn_l = lnorm(out_channels - global_channels)
self.bn_g = gnorm(global_channels)
lact = nn.Identity if ratio_gout == 1 else activation_layer
gact = nn.Identity if ratio_gout == 0 else activation_layer
self.act_l = lact(inplace=True)
self.act_g = gact(inplace=True)
def forward(self, x):
x_l, x_g = self.ffc(x)
x_l = self.act_l(self.bn_l(x_l))
x_g = self.act_g(self.bn_g(x_g))
return x_l, x_g
class FFCResnetBlock(nn.Module):
def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1,
spatial_transform_kwargs=None, inline=False, **conv_kwargs):
super().__init__()
self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
norm_layer=norm_layer,
activation_layer=activation_layer,
padding_type=padding_type,
**conv_kwargs)
self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
norm_layer=norm_layer,
activation_layer=activation_layer,
padding_type=padding_type,
**conv_kwargs)
# if spatial_transform_kwargs is not None:
# self.conv1 = LearnableSpatialTransformWrapper(self.conv1, **spatial_transform_kwargs)
# self.conv2 = LearnableSpatialTransformWrapper(self.conv2, **spatial_transform_kwargs)
self.inline = inline
def forward(self, x):
if self.inline:
x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
else:
x_l, x_g = x if type(x) is tuple else (x, 0)
id_l, id_g = x_l, x_g
x_l, x_g = self.conv1((x_l, x_g))
x_l, x_g = self.conv2((x_l, x_g))
x_l, x_g = id_l + x_l, id_g + x_g
out = x_l, x_g
if self.inline:
out = torch.cat(out, dim=1)
return out
class MaskedSinusoidalPositionalEmbedding(nn.Embedding):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
self.weight = self._init_weight(self.weight)
@staticmethod
def _init_weight(out: nn.Parameter):
"""
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
the 2nd half of the vector. [dim // 2:]
"""
n_pos, dim = out.shape
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
out.requires_grad = False # set early to avoid an error in pytorch-1.8+
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
return out
@torch.no_grad()
def forward(self, input_ids):
"""`input_ids` is expected to be [bsz x seqlen]."""
return super().forward(input_ids)
class MultiLabelEmbedding(nn.Module):
def __init__(self, num_positions: int, embedding_dim: int):
super().__init__()
self.weight = nn.Parameter(torch.Tensor(num_positions, embedding_dim))
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.weight)
def forward(self, input_ids):
# input_ids:[B,HW,4](onehot)
out = torch.matmul(input_ids, self.weight) # [B,HW,dim]
return out
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc=3, ndf=64, n_layers=4, norm_layer=nn.BatchNorm2d,):
super().__init__()
self.n_layers = n_layers
kw = 4
padw = int(np.ceil((kw-1.0)/2))
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)]]
nf = ndf
for n in range(1, n_layers):
nf_prev = nf
nf = min(nf * 2, 512)
cur_model = []
cur_model += [
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]
sequence.append(cur_model)
nf_prev = nf
nf = min(nf * 2, 512)
cur_model = []
cur_model += [
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]
sequence.append(cur_model)
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
for n in range(len(sequence)):
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
def get_all_activations(self, x):
res = [x]
for n in range(self.n_layers + 2):
model = getattr(self, 'model' + str(n))
res.append(model(res[-1]))
return res[1:]
def forward(self, x):
act = self.get_all_activations(x)
return act[-1], act[:-1]
class ConcatTupleLayer(nn.Module):
def forward(self, x):
assert isinstance(x, tuple)
x_l, x_g = x
assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
if not torch.is_tensor(x_g):
return x_l
return torch.cat(x, dim=1)
class FFCResNetGenerator(nn.Module):
def __init__(self, input_nc=4, output_nc=3, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
padding_type='reflect', activation_layer=nn.ReLU,
up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True),
init_conv_kwargs={}, downsample_conv_kwargs={}, resnet_conv_kwargs={}, spatial_transform_kwargs={},
add_out_act=True, max_features=1024, out_ffc=False, out_ffc_kwargs={}):
assert (n_blocks >= 0)
super().__init__()
model = [nn.ReflectionPad2d(3),
FFC_BN_ACT(input_nc, ngf, kernel_size=7, padding=0, norm_layer=norm_layer,
activation_layer=activation_layer, **init_conv_kwargs)]
### downsample
for i in range(n_downsampling):
mult = 2 ** i
if i == n_downsampling - 1:
cur_conv_kwargs = dict(downsample_conv_kwargs)
cur_conv_kwargs['ratio_gout'] = resnet_conv_kwargs.get('ratio_gin', 0)
else:
cur_conv_kwargs = downsample_conv_kwargs
model += [FFC_BN_ACT(min(max_features, ngf * mult),
min(max_features, ngf * mult * 2),
kernel_size=3, stride=2, padding=1,
norm_layer=norm_layer,
activation_layer=activation_layer,
**cur_conv_kwargs)]
mult = 2 ** n_downsampling
feats_num_bottleneck = min(max_features, ngf * mult)
### resnet blocks
for i in range(n_blocks):
cur_resblock = FFCResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation_layer=activation_layer,
norm_layer=norm_layer, **resnet_conv_kwargs)
model += [cur_resblock]
model += [ConcatTupleLayer()]
### upsample
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += [nn.ConvTranspose2d(min(max_features, ngf * mult),
min(max_features, int(ngf * mult / 2)),
kernel_size=3, stride=2, padding=1, output_padding=1),
up_norm_layer(min(max_features, int(ngf * mult / 2))),
up_activation]
if out_ffc:
model += [FFCResnetBlock(ngf, padding_type=padding_type, activation_layer=activation_layer,
norm_layer=norm_layer, inline=True, **out_ffc_kwargs)]
model += [nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
if add_out_act:
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
self.model = nn.Sequential(*model)
def forward(self, img, mask, rel_pos=None, direct=None) -> Tensor:
masked_img = torch.cat([img * (1 - mask), mask], dim=1)
if rel_pos is None:
return self.model(masked_img)
else:
x_l, x_g = self.model[:2](masked_img)
x_l = x_l.to(torch.float32)
x_l += rel_pos
x_l += direct
return self.model[2:]((x_l, x_g))
class MPE(nn.Module):
def __init__(self):
super().__init__()
self.rel_pos_emb = MaskedSinusoidalPositionalEmbedding(num_embeddings=128,
embedding_dim=64)
self.direct_emb = MultiLabelEmbedding(num_positions=4, embedding_dim=64)
self.alpha5 = nn.Parameter(torch.tensor(0, dtype=torch.float32), requires_grad=True)
self.alpha6 = nn.Parameter(torch.tensor(0, dtype=torch.float32), requires_grad=True)
def forward(self, rel_pos=None, direct=None):
b, h, w = rel_pos.shape
rel_pos = rel_pos.reshape(b, h * w)
rel_pos_emb = self.rel_pos_emb(rel_pos).reshape(b, h, w, -1).permute(0, 3, 1, 2) * self.alpha5
direct = direct.reshape(b, h * w, 4).to(torch.float32)
direct_emb = self.direct_emb(direct).reshape(b, h, w, -1).permute(0, 3, 1, 2) * self.alpha6
return rel_pos_emb, direct_emb
class LamaFourier:
def __init__(self, build_discriminator=True, use_mpe=False, large_arch: bool = False) -> None:
# super().__init__()
n_blocks = 9
if large_arch:
n_blocks = 18
self.generator = FFCResNetGenerator(4, 3, add_out_act='sigmoid',
n_blocks = n_blocks,
init_conv_kwargs={
'ratio_gin': 0,
'ratio_gout': 0,
'enable_lfu': False
}, downsample_conv_kwargs={
'ratio_gin': 0,
'ratio_gout': 0,
'enable_lfu': False
}, resnet_conv_kwargs={
'ratio_gin': 0.75,
'ratio_gout': 0.75,
'enable_lfu': False
},
)
self.discriminator = NLayerDiscriminator() if build_discriminator else None
self.inpaint_only = False
if use_mpe:
self.mpe = MPE()
else:
self.mpe = None
def train_generator(self):
self.inpaint_only = False
self.forward_generator = True
self.forward_discriminator = False
self.generator.train()
self.discriminator.eval()
set_requires_grad(self.discriminator, False)
set_requires_grad(self.generator, True)
if self.mpe is not None:
set_requires_grad(self.mpe, True)
def train_discriminator(self):
self.inpaint_only = False
self.forward_generator = False
self.forward_discriminator = True
self.discriminator.train()
self.generator.eval()
set_requires_grad(self.discriminator, True)
set_requires_grad(self.generator, False)
if self.mpe is not None:
set_requires_grad(self.mpe, False)
def to(self, device):
self.generator.to(device)
if self.discriminator is not None:
self.discriminator.to(device)
if self.mpe is not None:
self.mpe.to(device)
return self
def eval(self):
self.inpaint_only = True
self.generator.eval()
if self.mpe is not None:
self.mpe.eval()
return self
def cuda(self):
self.generator.cuda()
if self.discriminator is not None:
self.discriminator.cuda()
if self.mpe is not None:
self.mpe.cuda()
return self
def __call__(self, img: Tensor, mask: Tensor, rel_pos=None, direct=None):
if self.mpe is not None:
# 1 batch only
rel_pos, _, direct = self.load_masked_position_encoding(mask[0][0].cpu().numpy())
rel_pos = torch.LongTensor(rel_pos).unsqueeze_(0).to(img.device)
direct = torch.LongTensor(direct).unsqueeze_(0).to(img.device)
rel_pos, direct = self.mpe(rel_pos, direct)
else:
rel_pos, direct = None, None
predicted_img = self.generator(img, mask, rel_pos, direct)
if self.inpaint_only:
return predicted_img * mask + (1 - mask) * img
if self.forward_discriminator:
predicted_img = predicted_img.detach()
img.requires_grad = True
discr_real_pred, discr_real_features = self.discriminator(img)
discr_fake_pred, discr_fake_features = self.discriminator(predicted_img)
# fp = discr_fake_pred.detach().mean()
if self.forward_discriminator:
return {
'predicted_img': predicted_img,
'discr_real_pred': discr_real_pred,
'discr_fake_pred':discr_fake_pred
}
else:
return {
'predicted_img': predicted_img,
'discr_real_features': discr_real_features,
'discr_fake_features': discr_fake_features,
'discr_fake_pred': discr_fake_pred
}
def load_masked_position_encoding(self, mask):
mask = (mask * 255).astype(np.uint8)
ones_filter = np.ones((3, 3), dtype=np.float32)
d_filter1 = np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32)
d_filter2 = np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype=np.float32)
d_filter3 = np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype=np.float32)
d_filter4 = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype=np.float32)
str_size = 256
pos_num = 128
ori_mask = mask.copy()
ori_h, ori_w = ori_mask.shape[0:2]
ori_mask = ori_mask / 255
mask = cv2.resize(mask, (str_size, str_size), interpolation=cv2.INTER_AREA)
mask[mask > 0] = 255
h, w = mask.shape[0:2]
mask3 = mask.copy()
mask3 = 1. - (mask3 / 255.0)
pos = np.zeros((h, w), dtype=np.int32)
direct = np.zeros((h, w, 4), dtype=np.int32)
i = 0
if mask3.max() > 0:
# otherwise it will cause infinity loop
while np.sum(1 - mask3) > 0:
i += 1
mask3_ = cv2.filter2D(mask3, -1, ones_filter)
mask3_[mask3_ > 0] = 1
sub_mask = mask3_ - mask3
pos[sub_mask == 1] = i
m = cv2.filter2D(mask3, -1, d_filter1)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 0] = 1
m = cv2.filter2D(mask3, -1, d_filter2)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 1] = 1
m = cv2.filter2D(mask3, -1, d_filter3)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 2] = 1
m = cv2.filter2D(mask3, -1, d_filter4)
m[m > 0] = 1
m = m - mask3
direct[m == 1, 3] = 1
mask3 = mask3_
abs_pos = pos.copy()
rel_pos = pos / (str_size / 2) # to 0~1 maybe larger than 1
rel_pos = (rel_pos * pos_num).astype(np.int32)
rel_pos = np.clip(rel_pos, 0, pos_num - 1)
if ori_w != w or ori_h != h:
rel_pos = cv2.resize(rel_pos, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
rel_pos[ori_mask == 0] = 0
direct = cv2.resize(direct, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
direct[ori_mask == 0, :] = 0
return rel_pos, abs_pos, direct
def load_lama_mpe(model_path, device, use_mpe: bool = True, large_arch: bool = False) -> LamaFourier:
model = LamaFourier(build_discriminator=False, use_mpe=use_mpe, large_arch=large_arch)
sd = torch.load(model_path, map_location = 'cpu')
model.generator.load_state_dict(sd['gen_state_dict'])
if use_mpe:
model.mpe.load_state_dict(sd['str_state_dict'])
model.eval().to(device)
return model |