File size: 32,057 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
# Lama with Masking Positional Encoding
# original implementation https://github.com/DQiaole/ZITS_inpainting.git
# paper https://arxiv.org/pdf/2203.00867.pdf

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
import os
import shutil
from torch import Tensor

from .common import OfflineInpainter
from ..utils import resize_keep_aspect


TORCH_DTYPE_MAP = {
    'fp32': torch.float32,
    'fp16': torch.float16,
    'bf16': torch.bfloat16,
}


class LamaMPEInpainter(OfflineInpainter):

    '''
    Better mark as deprecated and replace with lama large
    '''

    _MODEL_MAPPING = {
        'model': {
            'url': 'https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.3/inpainting_lama_mpe.ckpt',
            'hash': 'd625aa1b3e0d0408acfd6928aa84f005867aa8dbb9162480346a4e20660786cc',
            'file': '.',
        },
    }

    def __init__(self, *args, **kwargs):
        os.makedirs(self.model_dir, exist_ok=True)
        if os.path.exists('inpainting_lama_mpe.ckpt'):
            shutil.move('inpainting_lama_mpe.ckpt', self._get_file_path('inpainting_lama_mpe.ckpt'))
        super().__init__(*args, **kwargs)

    async def _load(self, device: str):
        self.model = load_lama_mpe(self._get_file_path('inpainting_lama_mpe.ckpt'), device='cpu')
        self.model.eval()
        self.device = device
        if device.startswith('cuda') or device == 'mps':
            self.model.to(device)

    async def _unload(self):
        del self.model

    async def _infer(self, image: np.ndarray, mask: np.ndarray, inpainting_size: int = 1024, verbose: bool = False) -> np.ndarray:
        img_original = np.copy(image)
        mask_original = np.copy(mask)
        mask_original[mask_original < 127] = 0
        mask_original[mask_original >= 127] = 1
        mask_original = mask_original[:, :, None]

        height, width, c = image.shape
        if max(image.shape[0: 2]) > inpainting_size:
            image = resize_keep_aspect(image, inpainting_size)
            mask = resize_keep_aspect(mask, inpainting_size)
        pad_size = 8
        h, w, c = image.shape
        if h % pad_size != 0:
            new_h = (pad_size - (h % pad_size)) + h
        else:
            new_h = h
        if w % pad_size != 0:
            new_w = (pad_size - (w % pad_size)) + w
        else:
            new_w = w
        if new_h != h or new_w != w:
            image = cv2.resize(image, (new_w, new_h), interpolation = cv2.INTER_LINEAR)
            mask = cv2.resize(mask, (new_w, new_h), interpolation = cv2.INTER_LINEAR)
        self.logger.info(f'Inpainting resolution: {new_w}x{new_h}')
        if isinstance(self.model, LamaFourier):
            img_torch = torch.from_numpy(image).permute(2, 0, 1).unsqueeze_(0).float() / 255.
        else:
            img_torch = torch.from_numpy(image).permute(2, 0, 1).unsqueeze_(0).float() / 127.5 - 1.0
        mask_torch = torch.from_numpy(mask).unsqueeze_(0).unsqueeze_(0).float() / 255.0
        mask_torch[mask_torch < 0.5] = 0
        mask_torch[mask_torch >= 0.5] = 1
        if self.device.startswith('cuda') or self.device == 'mps':
            img_torch = img_torch.to(self.device)
            mask_torch = mask_torch.to(self.device)
        with torch.no_grad():
            img_torch *= (1 - mask_torch)
            if not (self.device.startswith('cuda')):
                # mps devices here
                img_inpainted_torch = self.model(img_torch, mask_torch)
            else:
                # Note: lama's weight shouldn't be convert to fp16 or bf16 otherwise it produces darkened results.
                # but it can inference under torch.autocast
                precision = TORCH_DTYPE_MAP[os.environ.get("INPAINTING_PRECISION", "fp32")]
                
                if precision == torch.float16:
                    precision = torch.bfloat16
                    self.logger.warning('Switch to bf16 due to Lama only compatible with bf16 and fp32.')

                with torch.autocast(device_type="cuda", dtype=precision):
                    img_inpainted_torch = self.model(img_torch, mask_torch)

        if isinstance(self.model, LamaFourier):
            img_inpainted = (img_inpainted_torch.cpu().squeeze_(0).permute(1, 2, 0).numpy() * 255.).astype(np.uint8)
        else:
            img_inpainted = ((img_inpainted_torch.cpu().squeeze_(0).permute(1, 2, 0).numpy() + 1.0) * 127.5).astype(np.uint8)
        if new_h != height or new_w != width:
            img_inpainted = cv2.resize(img_inpainted, (width, height), interpolation = cv2.INTER_LINEAR)
        ans = img_inpainted * mask_original + img_original * (1 - mask_original)
        return ans
    

class LamaLargeInpainter(LamaMPEInpainter):

    _MODEL_MAPPING = {
        'model': {
            'url': 'https://huggingface.co/dreMaz/AnimeMangaInpainting/resolve/main/lama_large_512px.ckpt',
            'hash': '11d30fbb3000fb2eceae318b75d9ced9229d99ae990a7f8b3ac35c8d31f2c935',
            'file': '.',
        },
    }

    async def _load(self, device: str):
        self.model = load_lama_mpe(self._get_file_path('lama_large_512px.ckpt'), device='cpu', use_mpe=False, large_arch=True)
        self.model.eval()
        self.device = device
        if device.startswith('cuda') or device == 'mps':
            self.model.to(device)



def set_requires_grad(module, value):
    for param in module.parameters():
        param.requires_grad = value

def get_activation(kind='tanh'):
    if kind == 'tanh':
        return nn.Tanh()
    if kind == 'sigmoid':
        return nn.Sigmoid()
    if kind is False:
        return nn.Identity()
    raise ValueError(f'Unknown activation kind {kind}')


class FFCSE_block(nn.Module):

    def __init__(self, channels, ratio_g):
        super(FFCSE_block, self).__init__()
        in_cg = int(channels * ratio_g)
        in_cl = channels - in_cg
        r = 16

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.conv1 = nn.Conv2d(channels, channels // r,
                               kernel_size=1, bias=True)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv_a2l = None if in_cl == 0 else nn.Conv2d(
            channels // r, in_cl, kernel_size=1, bias=True)
        self.conv_a2g = None if in_cg == 0 else nn.Conv2d(
            channels // r, in_cg, kernel_size=1, bias=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = x if type(x) is tuple else (x, 0)
        id_l, id_g = x

        x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1)
        x = self.avgpool(x)
        x = self.relu1(self.conv1(x))

        x_l = 0 if self.conv_a2l is None else id_l * \
            self.sigmoid(self.conv_a2l(x))
        x_g = 0 if self.conv_a2g is None else id_g * \
            self.sigmoid(self.conv_a2g(x))
        return x_l, x_g


class FourierUnit(nn.Module):

    def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',
                 spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
        # bn_layer not used
        super(FourierUnit, self).__init__()
        self.groups = groups

        self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
                                          out_channels=out_channels * 2,
                                          kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
        self.bn = torch.nn.BatchNorm2d(out_channels * 2)
        self.relu = torch.nn.ReLU(inplace=True)

        # squeeze and excitation block
        self.use_se = use_se
        # if use_se:
        #     if se_kwargs is None:
        #         se_kwargs = {}
        #     self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)

        self.spatial_scale_factor = spatial_scale_factor
        self.spatial_scale_mode = spatial_scale_mode
        self.spectral_pos_encoding = spectral_pos_encoding
        self.ffc3d = ffc3d
        self.fft_norm = fft_norm

    def forward(self, x):
        batch = x.shape[0]

        if self.spatial_scale_factor is not None:
            orig_size = x.shape[-2:]
            x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False)

        r_size = x.size()
        # (batch, c, h, w/2+1, 2)
        fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)

        if x.dtype in (torch.float16, torch.bfloat16):
            x = x.type(torch.float32)

        ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
        ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
        ffted = ffted.permute(0, 1, 4, 2, 3).contiguous()  # (batch, c, 2, h, w/2+1)
        ffted = ffted.view((batch, -1,) + ffted.size()[3:])

        if self.spectral_pos_encoding:
            height, width = ffted.shape[-2:]
            coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
            coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
            ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)

        if self.use_se:
            ffted = self.se(ffted)

        ffted = self.conv_layer(ffted)  # (batch, c*2, h, w/2+1)
        ffted = self.relu(self.bn(ffted))

        ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
            0, 1, 3, 4, 2).contiguous()  # (batch,c, t, h, w/2+1, 2)
        if ffted.dtype in (torch.float16, torch.bfloat16):
            ffted = ffted.type(torch.float32)
        ffted = torch.complex(ffted[..., 0], ffted[..., 1])

        ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
        output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)

        if self.spatial_scale_factor is not None:
            output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)

        return output


class SpectralTransform(nn.Module):

    def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs):
        # bn_layer not used
        super(SpectralTransform, self).__init__()
        self.enable_lfu = enable_lfu
        if stride == 2:
            self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        else:
            self.downsample = nn.Identity()

        self.stride = stride
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels //
                      2, kernel_size=1, groups=groups, bias=False),
            nn.BatchNorm2d(out_channels // 2),
            nn.ReLU(inplace=True)
        )
        self.fu = FourierUnit(
            out_channels // 2, out_channels // 2, groups, **fu_kwargs)
        if self.enable_lfu:
            self.lfu = FourierUnit(
                out_channels // 2, out_channels // 2, groups)
        self.conv2 = torch.nn.Conv2d(
            out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)

    def forward(self, x):

        x = self.downsample(x)
        x = self.conv1(x)
        output = self.fu(x)

        if self.enable_lfu:
            n, c, h, w = x.shape
            split_no = 2
            split_s = h // split_no
            xs = torch.cat(torch.split(
                x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
            xs = torch.cat(torch.split(xs, split_s, dim=-1),
                           dim=1).contiguous()
            xs = self.lfu(xs)
            xs = xs.repeat(1, 1, split_no, split_no).contiguous()
        else:
            xs = 0

        output = self.conv2(x + output + xs)

        return output


class FFC(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size,
                 ratio_gin, ratio_gout, stride=1, padding=0,
                 dilation=1, groups=1, bias=False, enable_lfu=True,
                 padding_type='reflect', gated=False, **spectral_kwargs):
        super(FFC, self).__init__()

        assert stride == 1 or stride == 2, "Stride should be 1 or 2."
        self.stride = stride

        in_cg = int(in_channels * ratio_gin)
        in_cl = in_channels - in_cg
        out_cg = int(out_channels * ratio_gout)
        out_cl = out_channels - out_cg
        #groups_g = 1 if groups == 1 else int(groups * ratio_gout)
        #groups_l = 1 if groups == 1 else groups - groups_g

        self.ratio_gin = ratio_gin
        self.ratio_gout = ratio_gout
        self.global_in_num = in_cg

        module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
        self.convl2l = module(in_cl, out_cl, kernel_size,
                              stride, padding, dilation, groups, bias, padding_mode=padding_type)
        module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
        self.convl2g = module(in_cl, out_cg, kernel_size,
                              stride, padding, dilation, groups, bias, padding_mode=padding_type)
        module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
        self.convg2l = module(in_cg, out_cl, kernel_size,
                              stride, padding, dilation, groups, bias, padding_mode=padding_type)
        module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
        self.convg2g = module(
            in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)

        self.gated = gated
        module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
        self.gate = module(in_channels, 2, 1)

    def forward(self, x):
        x_l, x_g = x if type(x) is tuple else (x, 0)
        out_xl, out_xg = 0, 0

        if self.gated:
            total_input_parts = [x_l]
            if torch.is_tensor(x_g):
                total_input_parts.append(x_g)
            total_input = torch.cat(total_input_parts, dim=1)

            gates = torch.sigmoid(self.gate(total_input))
            g2l_gate, l2g_gate = gates.chunk(2, dim=1)
        else:
            g2l_gate, l2g_gate = 1, 1

        if self.ratio_gout != 1:
            out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
        if self.ratio_gout != 0:
            out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)

        return out_xl, out_xg


class FFC_BN_ACT(nn.Module):

    def __init__(self, in_channels, out_channels,
                 kernel_size, ratio_gin, ratio_gout,
                 stride=1, padding=0, dilation=1, groups=1, bias=False,
                 norm_layer=nn.BatchNorm2d, activation_layer=nn.Identity,
                 padding_type='reflect',
                 enable_lfu=True, **kwargs):
        super(FFC_BN_ACT, self).__init__()
        self.ffc = FFC(in_channels, out_channels, kernel_size,
                       ratio_gin, ratio_gout, stride, padding, dilation,
                       groups, bias, enable_lfu, padding_type=padding_type, **kwargs)
        lnorm = nn.Identity if ratio_gout == 1 else norm_layer
        gnorm = nn.Identity if ratio_gout == 0 else norm_layer
        global_channels = int(out_channels * ratio_gout)
        self.bn_l = lnorm(out_channels - global_channels)
        self.bn_g = gnorm(global_channels)

        lact = nn.Identity if ratio_gout == 1 else activation_layer
        gact = nn.Identity if ratio_gout == 0 else activation_layer
        self.act_l = lact(inplace=True)
        self.act_g = gact(inplace=True)

    def forward(self, x):
        x_l, x_g = self.ffc(x)
        x_l = self.act_l(self.bn_l(x_l))
        x_g = self.act_g(self.bn_g(x_g))
        return x_l, x_g


class FFCResnetBlock(nn.Module):
    def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1,
                 spatial_transform_kwargs=None, inline=False, **conv_kwargs):
        super().__init__()
        self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
                                norm_layer=norm_layer,
                                activation_layer=activation_layer,
                                padding_type=padding_type,
                                **conv_kwargs)
        self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
                                norm_layer=norm_layer,
                                activation_layer=activation_layer,
                                padding_type=padding_type,
                                **conv_kwargs)
        # if spatial_transform_kwargs is not None:
        #     self.conv1 = LearnableSpatialTransformWrapper(self.conv1, **spatial_transform_kwargs)
        #     self.conv2 = LearnableSpatialTransformWrapper(self.conv2, **spatial_transform_kwargs)
        self.inline = inline

    def forward(self, x):
        if self.inline:
            x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
        else:
            x_l, x_g = x if type(x) is tuple else (x, 0)

        id_l, id_g = x_l, x_g

        x_l, x_g = self.conv1((x_l, x_g))
        x_l, x_g = self.conv2((x_l, x_g))

        x_l, x_g = id_l + x_l, id_g + x_g
        out = x_l, x_g
        if self.inline:
            out = torch.cat(out, dim=1)
        return out


class MaskedSinusoidalPositionalEmbedding(nn.Embedding):
    """This module produces sinusoidal positional embeddings of any length."""

    def __init__(self, num_embeddings: int, embedding_dim: int):
        super().__init__(num_embeddings, embedding_dim)
        self.weight = self._init_weight(self.weight)

    @staticmethod
    def _init_weight(out: nn.Parameter):
        """
        Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
        the 2nd half of the vector. [dim // 2:]
        """
        n_pos, dim = out.shape
        position_enc = np.array(
            [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
        )
        out.requires_grad = False  # set early to avoid an error in pytorch-1.8+
        sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
        out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
        out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
        out.detach_()
        return out

    @torch.no_grad()
    def forward(self, input_ids):
        """`input_ids` is expected to be [bsz x seqlen]."""
        return super().forward(input_ids)


class MultiLabelEmbedding(nn.Module):
    def __init__(self, num_positions: int, embedding_dim: int):
        super().__init__()
        self.weight = nn.Parameter(torch.Tensor(num_positions, embedding_dim))
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.normal_(self.weight)

    def forward(self, input_ids):
        # input_ids:[B,HW,4](onehot)
        out = torch.matmul(input_ids, self.weight)  # [B,HW,dim]
        return out


class NLayerDiscriminator(nn.Module):
    def __init__(self, input_nc=3, ndf=64, n_layers=4, norm_layer=nn.BatchNorm2d,):
        super().__init__()
        self.n_layers = n_layers

        kw = 4
        padw = int(np.ceil((kw-1.0)/2))
        sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
                     nn.LeakyReLU(0.2, True)]]

        nf = ndf
        for n in range(1, n_layers):
            nf_prev = nf
            nf = min(nf * 2, 512)

            cur_model = []
            cur_model += [
                nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
                norm_layer(nf),
                nn.LeakyReLU(0.2, True)
            ]
            sequence.append(cur_model)

        nf_prev = nf
        nf = min(nf * 2, 512)

        cur_model = []
        cur_model += [
            nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
            norm_layer(nf),
            nn.LeakyReLU(0.2, True)
        ]
        sequence.append(cur_model)

        sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]

        for n in range(len(sequence)):
            setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))

    def get_all_activations(self, x):
        res = [x]
        for n in range(self.n_layers + 2):
            model = getattr(self, 'model' + str(n))
            res.append(model(res[-1]))
        return res[1:]

    def forward(self, x):
        act = self.get_all_activations(x)
        return act[-1], act[:-1]


class ConcatTupleLayer(nn.Module):
    def forward(self, x):
        assert isinstance(x, tuple)
        x_l, x_g = x
        assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
        if not torch.is_tensor(x_g):
            return x_l
        return torch.cat(x, dim=1)


class FFCResNetGenerator(nn.Module):
    def __init__(self, input_nc=4, output_nc=3, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
                 padding_type='reflect', activation_layer=nn.ReLU,
                 up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True),
                 init_conv_kwargs={}, downsample_conv_kwargs={}, resnet_conv_kwargs={}, spatial_transform_kwargs={},
                 add_out_act=True, max_features=1024, out_ffc=False, out_ffc_kwargs={}):
        assert (n_blocks >= 0)
        super().__init__()

        model = [nn.ReflectionPad2d(3),
                 FFC_BN_ACT(input_nc, ngf, kernel_size=7, padding=0, norm_layer=norm_layer,
                            activation_layer=activation_layer, **init_conv_kwargs)]

        ### downsample
        for i in range(n_downsampling):
            mult = 2 ** i
            if i == n_downsampling - 1:
                cur_conv_kwargs = dict(downsample_conv_kwargs)
                cur_conv_kwargs['ratio_gout'] = resnet_conv_kwargs.get('ratio_gin', 0)
            else:
                cur_conv_kwargs = downsample_conv_kwargs
            model += [FFC_BN_ACT(min(max_features, ngf * mult),
                                 min(max_features, ngf * mult * 2),
                                 kernel_size=3, stride=2, padding=1,
                                 norm_layer=norm_layer,
                                 activation_layer=activation_layer,
                                 **cur_conv_kwargs)]

        mult = 2 ** n_downsampling
        feats_num_bottleneck = min(max_features, ngf * mult)

        ### resnet blocks
        for i in range(n_blocks):
            cur_resblock = FFCResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation_layer=activation_layer,
                                          norm_layer=norm_layer, **resnet_conv_kwargs)
            model += [cur_resblock]

        model += [ConcatTupleLayer()]

        ### upsample
        for i in range(n_downsampling):
            mult = 2 ** (n_downsampling - i)
            model += [nn.ConvTranspose2d(min(max_features, ngf * mult),
                                         min(max_features, int(ngf * mult / 2)),
                                         kernel_size=3, stride=2, padding=1, output_padding=1),
                      up_norm_layer(min(max_features, int(ngf * mult / 2))),
                      up_activation]

        if out_ffc:
            model += [FFCResnetBlock(ngf, padding_type=padding_type, activation_layer=activation_layer,
                                     norm_layer=norm_layer, inline=True, **out_ffc_kwargs)]

        model += [nn.ReflectionPad2d(3),
                  nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
        if add_out_act:
            model.append(get_activation('tanh' if add_out_act is True else add_out_act))
        self.model = nn.Sequential(*model)

    def forward(self, img, mask, rel_pos=None, direct=None) -> Tensor:
        masked_img = torch.cat([img * (1 - mask), mask], dim=1)
        if rel_pos is None:
            return self.model(masked_img)
        else:
            
            x_l, x_g = self.model[:2](masked_img)
            x_l = x_l.to(torch.float32)
            x_l += rel_pos
            x_l += direct
            return self.model[2:]((x_l, x_g))


class MPE(nn.Module):
    def __init__(self):
        super().__init__()
        self.rel_pos_emb = MaskedSinusoidalPositionalEmbedding(num_embeddings=128,
                                                                embedding_dim=64)
        self.direct_emb = MultiLabelEmbedding(num_positions=4, embedding_dim=64)
        self.alpha5 = nn.Parameter(torch.tensor(0, dtype=torch.float32), requires_grad=True)
        self.alpha6 = nn.Parameter(torch.tensor(0, dtype=torch.float32), requires_grad=True)

    def forward(self, rel_pos=None, direct=None):
        b, h, w = rel_pos.shape
        rel_pos = rel_pos.reshape(b, h * w)
        rel_pos_emb = self.rel_pos_emb(rel_pos).reshape(b, h, w, -1).permute(0, 3, 1, 2) * self.alpha5
        direct = direct.reshape(b, h * w, 4).to(torch.float32)
        direct_emb = self.direct_emb(direct).reshape(b, h, w, -1).permute(0, 3, 1, 2) * self.alpha6

        return rel_pos_emb, direct_emb



class LamaFourier:
    def __init__(self, build_discriminator=True, use_mpe=False, large_arch: bool = False) -> None:
        # super().__init__()

        n_blocks = 9
        if large_arch:
            n_blocks = 18
        
        self.generator = FFCResNetGenerator(4, 3, add_out_act='sigmoid', 
                            n_blocks = n_blocks,
                            init_conv_kwargs={
                            'ratio_gin': 0,
                            'ratio_gout': 0,
                            'enable_lfu': False
                        }, downsample_conv_kwargs={
                            'ratio_gin': 0,
                            'ratio_gout': 0,
                            'enable_lfu': False
                        }, resnet_conv_kwargs={
                            'ratio_gin': 0.75,
                            'ratio_gout': 0.75,
                            'enable_lfu': False
                        }, 
                    )
        
        self.discriminator = NLayerDiscriminator() if build_discriminator else None
        self.inpaint_only = False
        if use_mpe:
            self.mpe = MPE()
        else:
            self.mpe = None

    def train_generator(self):
        self.inpaint_only = False
        self.forward_generator = True
        self.forward_discriminator = False
        self.generator.train()
        self.discriminator.eval()
        set_requires_grad(self.discriminator, False)
        set_requires_grad(self.generator, True)
        if self.mpe is not None:
            set_requires_grad(self.mpe, True)

    def train_discriminator(self):
        self.inpaint_only = False
        self.forward_generator = False
        self.forward_discriminator = True
        self.discriminator.train()
        self.generator.eval()
        set_requires_grad(self.discriminator, True)
        set_requires_grad(self.generator, False)
        if self.mpe is not None:
            set_requires_grad(self.mpe, False)

    def to(self, device):
        self.generator.to(device)
        if self.discriminator is not None:
            self.discriminator.to(device)
        if self.mpe is not None:
            self.mpe.to(device)
        return self

    def eval(self):
        self.inpaint_only = True
        self.generator.eval()
        if self.mpe is not None:
            self.mpe.eval()
        return self

    def cuda(self):
        self.generator.cuda()
        if self.discriminator is not None:
            self.discriminator.cuda()
        if self.mpe is not None:
            self.mpe.cuda()
        return self

    def __call__(self, img: Tensor, mask: Tensor, rel_pos=None, direct=None):

        if self.mpe is not None:
            # 1 batch only
            rel_pos, _, direct = self.load_masked_position_encoding(mask[0][0].cpu().numpy())
            rel_pos = torch.LongTensor(rel_pos).unsqueeze_(0).to(img.device)
            direct = torch.LongTensor(direct).unsqueeze_(0).to(img.device)
            rel_pos, direct = self.mpe(rel_pos, direct)
        else:
            rel_pos, direct = None, None
        predicted_img = self.generator(img, mask, rel_pos, direct)

        if self.inpaint_only:
            return predicted_img * mask + (1 - mask) * img

        if self.forward_discriminator:
            predicted_img = predicted_img.detach()
            img.requires_grad = True


        discr_real_pred, discr_real_features = self.discriminator(img)
        discr_fake_pred, discr_fake_features = self.discriminator(predicted_img)
        # fp = discr_fake_pred.detach().mean()

        if self.forward_discriminator:
            return  {
                'predicted_img': predicted_img, 
                'discr_real_pred': discr_real_pred, 
                'discr_fake_pred':discr_fake_pred
            }
        else:
            return  {
                'predicted_img': predicted_img, 
                'discr_real_features': discr_real_features, 
                'discr_fake_features': discr_fake_features, 
                'discr_fake_pred': discr_fake_pred
            }

    def load_masked_position_encoding(self, mask):
        mask = (mask * 255).astype(np.uint8)
        ones_filter = np.ones((3, 3), dtype=np.float32)
        d_filter1 = np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32)
        d_filter2 = np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype=np.float32)
        d_filter3 = np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype=np.float32)
        d_filter4 = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype=np.float32)
        str_size = 256
        pos_num = 128

        ori_mask = mask.copy()
        ori_h, ori_w = ori_mask.shape[0:2]
        ori_mask = ori_mask / 255
        mask = cv2.resize(mask, (str_size, str_size), interpolation=cv2.INTER_AREA)
        mask[mask > 0] = 255
        h, w = mask.shape[0:2]
        mask3 = mask.copy()
        mask3 = 1. - (mask3 / 255.0)
        pos = np.zeros((h, w), dtype=np.int32)
        direct = np.zeros((h, w, 4), dtype=np.int32)
        i = 0

        if mask3.max() > 0:
            # otherwise it will cause infinity loop
            while np.sum(1 - mask3) > 0:
                i += 1
                mask3_ = cv2.filter2D(mask3, -1, ones_filter)
                mask3_[mask3_ > 0] = 1
                sub_mask = mask3_ - mask3
                pos[sub_mask == 1] = i

                m = cv2.filter2D(mask3, -1, d_filter1)
                m[m > 0] = 1
                m = m - mask3
                direct[m == 1, 0] = 1

                m = cv2.filter2D(mask3, -1, d_filter2)
                m[m > 0] = 1
                m = m - mask3
                direct[m == 1, 1] = 1

                m = cv2.filter2D(mask3, -1, d_filter3)
                m[m > 0] = 1
                m = m - mask3
                direct[m == 1, 2] = 1

                m = cv2.filter2D(mask3, -1, d_filter4)
                m[m > 0] = 1
                m = m - mask3
                direct[m == 1, 3] = 1

                mask3 = mask3_

        abs_pos = pos.copy()
        rel_pos = pos / (str_size / 2)  # to 0~1 maybe larger than 1
        rel_pos = (rel_pos * pos_num).astype(np.int32)
        rel_pos = np.clip(rel_pos, 0, pos_num - 1)

        if ori_w != w or ori_h != h:
            rel_pos = cv2.resize(rel_pos, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
            rel_pos[ori_mask == 0] = 0
            direct = cv2.resize(direct, (ori_w, ori_h), interpolation=cv2.INTER_NEAREST)
            direct[ori_mask == 0, :] = 0

        return rel_pos, abs_pos, direct


def load_lama_mpe(model_path, device, use_mpe: bool = True, large_arch: bool = False) -> LamaFourier:
    model = LamaFourier(build_discriminator=False, use_mpe=use_mpe, large_arch=large_arch)
    sd = torch.load(model_path, map_location = 'cpu')
    model.generator.load_state_dict(sd['gen_state_dict'])
    if use_mpe:
        model.mpe.load_state_dict(sd['str_state_dict'])
    model.eval().to(device)
    return model