File size: 11,553 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255


import einops
import torch
import torch as th
import torch.nn as nn
import numpy as np
from tqdm import tqdm
import cv2

from .ldm.modules.diffusionmodules.util import (
    conv_nd,
    linear,
    zero_module,
    timestep_embedding,
)
from .ldm.modules.diffusionmodules.util import noise_like
from einops import rearrange, repeat
from torchvision.utils import make_grid
from .ldm.modules.attention import SpatialTransformer
from .ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from .ldm.models.diffusion.ddpm import LatentDiffusion
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.util import log_txt_as_img, exists, instantiate_from_config

class GuidedDDIMSample(DDIMSampler) :
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    @torch.no_grad()
    def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,

                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,

                      unconditional_guidance_scale=1., unconditional_conditioning=None,

                      dynamic_threshold=None):
        b, *_, device = *x.shape, x.device

        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
            model_output = self.model.apply_model(x, t, c)
        else:
            x_in = torch.cat([x] * 2)
            t_in = torch.cat([t] * 2)
            if isinstance(c, dict):
                assert isinstance(unconditional_conditioning, dict)
                c_in = dict()
                for k in c:
                    if isinstance(c[k], list):
                        c_in[k] = [torch.cat([
                            unconditional_conditioning[k][i],
                            c[k][i]]) for i in range(len(c[k]))]
                    else:
                        c_in[k] = torch.cat([
                                unconditional_conditioning[k],
                                c[k]])
            elif isinstance(c, list):
                c_in = list()
                assert isinstance(unconditional_conditioning, list)
                for i in range(len(c)):
                    c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
            else:
                c_in = torch.cat([unconditional_conditioning, c])
            model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
            model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)

        e_t = model_output

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
        # select parameters corresponding to the currently considered timestep
        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)

        # current prediction for x_0
        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()

        # direction pointing to x_t
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
        return x_prev, pred_x0
    
    @torch.no_grad()
    def decode(self, x_latent, cond, t_start, init_latent=None, nmask=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None,

               use_original_steps=False, callback=None):

        timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
        total_steps = len(timesteps)
        timesteps = timesteps[:t_start]

        time_range = np.flip(timesteps)
        total_steps = timesteps.shape[0]
        print(f"Running Guided DDIM Sampling with {len(timesteps)} timesteps, t_start={t_start}")
        iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
        x_dec = x_latent
        for i, step in enumerate(iterator):
            p = (i + (total_steps - t_start) + 1) / (total_steps)
            index = total_steps - i - 1
            ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
            if nmask is not None :
                noised_input = self.model.q_sample(init_latent.to(x_latent.device), ts.to(x_latent.device))
                x_dec = (1 - nmask) * noised_input + nmask * x_dec
            x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
                                          unconditional_guidance_scale=unconditional_guidance_scale,
                                          unconditional_conditioning=unconditional_conditioning)
            if callback: callback(i)
        return x_dec
    
def get_inpainting_image_condition(model, image, mask) :
    conditioning_mask = np.array(mask.convert("L"))
    conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
    conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
    conditioning_mask = torch.round(conditioning_mask)
    conditioning_mask = conditioning_mask.to(device=image.device, dtype=image.dtype)
    conditioning_image = torch.lerp(
        image,
        image * (1.0 - conditioning_mask),
        1
    )
    conditioning_image = model.get_first_stage_encoding(model.encode_first_stage(conditioning_image))
    conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=conditioning_image.shape[-2:])
    conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
    image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
    return image_conditioning

def get_empty_image_condition(latent) :
    return latent.new_zeros(latent.shape[0], 5, latent.shape[2], latent.shape[3])

from PIL import Image, ImageFilter, ImageOps

def fill_mask_input(image, mask):
    """fills masked regions with colors from image using blur. Not extremely effective."""

    image_mod = Image.new('RGBA', (image.width, image.height))

    image_masked = Image.new('RGBa', (image.width, image.height))
    image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))

    image_masked = image_masked.convert('RGBa')

    for radius, repeats in [(256, 1), (64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
        blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
        for _ in range(repeats):
            image_mod.alpha_composite(blurred)

    return image_mod.convert("RGB")

class GuidedLDM(LatentDiffusion):
    def __init__(self,  *args, **kwargs):
        super().__init__(*args, **kwargs)

    @torch.no_grad()
    def img2img_inpaint(

        self,

        image: Image.Image, 

        c_text: str, 

        uc_text: str, 

        mask: Image.Image,

        ddim_steps = 50, 

        mask_blur: int = 16,

        device: str = 'cpu',

        **kwargs) -> Image.Image :
        ddim_sampler = GuidedDDIMSample(self)
        # move to device mps, cuda or cpu
        if device.startswith('cuda') or device == 'mps':
            self.cond_stage_model.to(device)
            self.first_stage_model.to(device)
        c_text = self.get_learned_conditioning([c_text])
        uc_text = self.get_learned_conditioning([uc_text])
        cond = {"c_crossattn": [c_text]}
        uc_cond = {"c_crossattn": [uc_text]}
        
            
        image_mask = mask
        image_mask = image_mask.convert('L')
        image_mask = image_mask.filter(ImageFilter.GaussianBlur(mask_blur))
        latent_mask = image_mask
        image = fill_mask_input(image, latent_mask)
        image = np.array(image).astype(np.float32) / 127.5 - 1.0
        image = np.moveaxis(image, 2, 0)
        image = torch.from_numpy(image).to(device)[None]
        init_latent = self.get_first_stage_encoding(self.encode_first_stage(image))
        init_mask = latent_mask
        latmask = init_mask.convert('RGB').resize((init_latent.shape[3], init_latent.shape[2]))
        latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
        latmask = latmask[0]
        latmask = np.around(latmask)
        latmask = np.tile(latmask[None], (4, 1, 1))
        nmask = torch.asarray(latmask).to(init_latent.device).float()
        init_latent = (1 - nmask) * init_latent + nmask * torch.randn_like(init_latent)
        denoising_strength = 1
        if self.model.conditioning_key == 'hybrid' :
            image_cdt = get_inpainting_image_condition(self, image, image_mask)
            cond["c_concat"] = [image_cdt]
            uc_cond["c_concat"] = [image_cdt]        
        
        steps = ddim_steps
        t_enc = int(min(denoising_strength, 0.999) * steps)
        eta = 0

        noise = torch.randn_like(init_latent)
        ddim_sampler.make_schedule(ddim_num_steps=steps, ddim_eta=eta, ddim_discretize="uniform", verbose=False)
        x1 = ddim_sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * int(init_latent.shape[0])).to(device), noise=noise)

        if device.startswith('cuda') or device == 'mps':
            self.cond_stage_model.cpu()
            self.first_stage_model.cpu()

        if device.startswith('cuda') or device == 'mps':
            self.model.to(device)
        decoded = ddim_sampler.decode(x1, cond,t_enc,init_latent=init_latent,nmask=nmask,unconditional_guidance_scale=7,unconditional_conditioning=uc_cond)
        if device.startswith('cuda') or device == 'mps':
            self.model.cpu()

        if mask is not None :
            decoded = init_latent * (1 - nmask) + decoded * nmask

        if device.startswith('cuda') or device == 'mps':
            self.first_stage_model.to(device)
        x_samples = self.decode_first_stage(decoded)
        if device.startswith('cuda') or device == 'mps':
            self.first_stage_model.cpu()
        return torch.clip(x_samples, -1, 1)
    
import os
import torch

from omegaconf import OmegaConf
from ldm.util import instantiate_from_config


def get_state_dict(d):
    return d.get('state_dict', d)


def load_state_dict(ckpt_path, location='cpu'):
    _, extension = os.path.splitext(ckpt_path)
    if extension.lower() == ".safetensors":
        import safetensors.torch
        state_dict = safetensors.torch.load_file(ckpt_path, device=location)
    else:
        state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
    state_dict = get_state_dict(state_dict)
    return state_dict


def create_model(config_path):
    config = OmegaConf.load(config_path)
    model = instantiate_from_config(config.model).cpu()
    return model