File size: 7,698 Bytes
9dce458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
"""
Copyright (c) 2019-present NAVER Corp.
MIT License
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import shutil
import numpy as np
import torch
import cv2
import einops
from typing import List, Tuple
from .default_utils.DBNet_resnet34 import TextDetection as TextDetectionDefault
from .default_utils import imgproc, dbnet_utils, craft_utils
from .common import OfflineDetector
from ..utils import TextBlock, Quadrilateral, det_rearrange_forward
from shapely.geometry import Polygon, MultiPoint
from shapely import affinity
from .craft_utils.vgg16_bn import vgg16_bn, init_weights
from .craft_utils.refiner import RefineNet
class double_conv(nn.Module):
def __init__(self, in_ch, mid_ch, out_ch):
super(double_conv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=1),
nn.BatchNorm2d(mid_ch),
nn.ReLU(inplace=True),
nn.Conv2d(mid_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv(x)
return x
class CRAFT(nn.Module):
def __init__(self, pretrained=False, freeze=False):
super(CRAFT, self).__init__()
""" Base network """
self.basenet = vgg16_bn(pretrained, freeze)
""" U network """
self.upconv1 = double_conv(1024, 512, 256)
self.upconv2 = double_conv(512, 256, 128)
self.upconv3 = double_conv(256, 128, 64)
self.upconv4 = double_conv(128, 64, 32)
num_class = 2
self.conv_cls = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(32, 16, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(16, 16, kernel_size=1), nn.ReLU(inplace=True),
nn.Conv2d(16, num_class, kernel_size=1),
)
init_weights(self.upconv1.modules())
init_weights(self.upconv2.modules())
init_weights(self.upconv3.modules())
init_weights(self.upconv4.modules())
init_weights(self.conv_cls.modules())
def forward(self, x):
""" Base network """
sources = self.basenet(x)
""" U network """
y = torch.cat([sources[0], sources[1]], dim=1)
y = self.upconv1(y)
y = F.interpolate(y, size=sources[2].size()[2:], mode='bilinear', align_corners=False)
y = torch.cat([y, sources[2]], dim=1)
y = self.upconv2(y)
y = F.interpolate(y, size=sources[3].size()[2:], mode='bilinear', align_corners=False)
y = torch.cat([y, sources[3]], dim=1)
y = self.upconv3(y)
y = F.interpolate(y, size=sources[4].size()[2:], mode='bilinear', align_corners=False)
y = torch.cat([y, sources[4]], dim=1)
feature = self.upconv4(y)
y = self.conv_cls(feature)
return y.permute(0,2,3,1), feature
from collections import OrderedDict
def copyStateDict(state_dict):
if list(state_dict.keys())[0].startswith("module"):
start_idx = 1
else:
start_idx = 0
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = ".".join(k.split(".")[start_idx:])
new_state_dict[name] = v
return new_state_dict
class CRAFTDetector(OfflineDetector):
_MODEL_MAPPING = {
'refiner': {
'url': 'https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.3/craft_refiner_CTW1500.pth',
'hash': 'f7000cd3e9c76f2231b62b32182212203f73c08dfaa12bb16ffb529948a01399',
'file': 'craft_refiner_CTW1500.pth',
},
'craft': {
'url': 'https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.3/craft_mlt_25k.pth',
'hash': '4a5efbfb48b4081100544e75e1e2b57f8de3d84f213004b14b85fd4b3748db17',
'file': 'craft_mlt_25k.pth',
}
}
def __init__(self, *args, **kwargs):
os.makedirs(self.model_dir, exist_ok=True)
if os.path.exists('craft_mlt_25k.pth'):
shutil.move('craft_mlt_25k.pth', self._get_file_path('craft_mlt_25k.pth'))
if os.path.exists('craft_refiner_CTW1500.pth'):
shutil.move('craft_refiner_CTW1500.pth', self._get_file_path('craft_refiner_CTW1500.pth'))
super().__init__(*args, **kwargs)
async def _load(self, device: str):
self.model = CRAFT()
self.model.load_state_dict(copyStateDict(torch.load(self._get_file_path('craft_mlt_25k.pth'), map_location='cpu')))
self.model.eval()
self.model_refiner = RefineNet()
self.model_refiner.load_state_dict(copyStateDict(torch.load(self._get_file_path('craft_refiner_CTW1500.pth'), map_location='cpu')))
self.model_refiner.eval()
self.device = device
if device == 'cuda' or device == 'mps':
self.model = self.model.to(self.device)
self.model_refiner = self.model_refiner.to(self.device)
global MODEL
MODEL = self.model
async def _unload(self):
del self.model
async def _infer(self, image: np.ndarray, detect_size: int, text_threshold: float, box_threshold: float,
unclip_ratio: float, verbose: bool = False):
img_resized, target_ratio, size_heatmap, pad_w, pad_h = imgproc.resize_aspect_ratio(image, detect_size, interpolation = cv2.INTER_CUBIC, mag_ratio = 1)
ratio_h = ratio_w = 1 / target_ratio
# preprocessing
x = imgproc.normalizeMeanVariance(img_resized)
x = torch.from_numpy(x).permute(2, 0, 1) # [h, w, c] to [c, h, w]
x = x.unsqueeze(0).to(self.device) # [c, h, w] to [b, c, h, w]
with torch.no_grad() :
y, feature = self.model(x)
# make score and link map
score_text = y[0,:,:,0].cpu().data.numpy()
score_link = y[0,:,:,1].cpu().data.numpy()
# refine link
y_refiner = self.model_refiner(y, feature)
score_link = y_refiner[0,:,:,0].cpu().data.numpy()
# Post-processing
boxes, polys = craft_utils.getDetBoxes(score_text, score_link, text_threshold, box_threshold, box_threshold, True)
# coordinate adjustment
boxes = craft_utils.adjustResultCoordinates(boxes, ratio_w, ratio_h)
polys = craft_utils.adjustResultCoordinates(polys, ratio_w, ratio_h)
for k in range(len(polys)):
if polys[k] is None: polys[k] = boxes[k]
mask = np.zeros(shape = (image.shape[0], image.shape[1]), dtype = np.uint8)
for poly in polys :
mask = cv2.fillPoly(mask, [poly.reshape((-1, 1, 2)).astype(np.int32)], color = 255)
polys_ret = []
for i in range(len(polys)) :
poly = MultiPoint(polys[i])
if poly.area > 10 :
rect = poly.minimum_rotated_rectangle
rect = affinity.scale(rect, xfact = 1.2, yfact = 1.2)
polys_ret.append(np.roll(np.asarray(list(rect.exterior.coords)[:4]), 2))
kern = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 9))
mask = cv2.dilate(mask, kern)
textlines = [Quadrilateral(pts.astype(int), '', 1) for pts in polys_ret]
textlines = list(filter(lambda q: q.area > 16, textlines))
return textlines, mask, None
|