# app.py import gradio as gr import spacy, re, subprocess, sys, os from spellchecker import SpellChecker from transformers import pipeline subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") spell = SpellChecker(language='en') # 🔧 1) raise max_new_tokens so each chunk can be LONGER para = pipeline( "text2text-generation", model="Vamsi/T5_Paraphrase_Paws", device=-1, max_new_tokens=2000 # 2000 tokens ≈ 1 500 words ) def simple_correct(text): return " ".join(spell.correction(w) or w for w in text.split()) def chunk_text(text, max_words=350): words = text.split() for i in range(0, len(words), max_words): yield " ".join(words[i:i + max_words]) def humanize(text, tone, strength, freeze): locked = [(ent.text, ent.label_) for ent in nlp(text).ents] if freeze else [] out_chunks = [] for chunk in chunk_text(text, 350): # 🔧 2) tell the model *not to summarize* prompt = f"Rewrite the following text naturally without shortening it:\n{chunk}" paraphrased = para( prompt, max_new_tokens=2000, do_sample=True, temperature=0.7 * strength / 10 )[0]['generated_text'] paraphrased = simple_correct(paraphrased) for ent, label in locked: paraphrased = re.sub(re.escape(ent), ent, paraphrased, flags=re.IGNORECASE) out_chunks.append(paraphrased) full_text = " ".join(out_chunks) file_path = "/tmp/full_humanized.txt" with open(file_path, "w", encoding="utf-8") as f: f.write(full_text) return full_text, file_path with gr.Blocks(title="AI Humanizer – Exact Length") as demo: gr.Markdown("## AI Humanizer – Exact Length, No Shortening") with gr.Row(): with gr.Column(): text_in = gr.Textbox(label="Paste your text (any length)", lines=15, max_lines=None) tone_dd = gr.Dropdown(["Casual", "Academic", "Marketing", "Legal", "Creative"], value="Casual", label="Tone") strength_sl = gr.Slider(1, 10, value=5, label="Strength 1-10") lock_cb = gr.Checkbox(label="Lock facts / dates / names") submit_btn = gr.Button("Humanize", variant="primary") with gr.Column(): # 🔧 3) make the output box big enough text_out = gr.Textbox(label="Humanized text (same length)", lines=30, interactive=True) with gr.Row(): copy_btn = gr.Button("📋 Copy") file_out = gr.File(label="Download .txt") submit_btn.click(humanize, inputs=[text_in, tone_dd, strength_sl, lock_cb], outputs=[text_out, file_out]) copy_btn.click(None, text_out, None, js="(txt) => navigator.clipboard.writeText(txt)") demo.launch()