import numpy as np from tensorflow.keras.models import load_model from huggingface_hub import hf_hub_download # ๐ŸŽฏ Change to your actual model repo and filename REPO_ID = "Sukumar2005/rnn_models" FILENAME = "/content/drive/MyDrive/model.keras" # replace with actual model file name def download_model(repo_id: str, filename: str, revision: str = None): """Download model from Hugging Face hub.""" local_path = hf_hub_download( repo_id=repo_id, filename=filename, revision=revision ) return local_path def load_rnn_model(model_path: str): return load_model(model_path) def predict_next(model, a: int, b: int, c: int): x = np.array([a, b, c], dtype=float).reshape((1, 3, 1)) return float(model.predict(x)[0][0]) def main(): # ๐Ÿ“ฆ Download print("Downloading model...") model_path = download_model(REPO_ID, FILENAME) print("Model downloaded to:", model_path) # โš™๏ธ Load model = load_rnn_model(model_path) print("Model loaded!") # ๐Ÿงช Test prediction test_input = [10, 11, 12] print(f"Input: {test_input}") next_val = predict_next(model, *test_input) print(f"Predicted next value: {next_val:.2f}") if __name__ == "__main__": main()