import pandas as pd import numpy as np import gradio as gr from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt # Loading the dataset df = pd.read_csv('assignment-2-k2461469.csv') # Splitting the data into features and target variable X = df[["dirty", "wait", "lastyear", "usa"]] y = df["good"] # Splitting the dataset into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Creating and fitting the logistic regression model model = LogisticRegression() model.fit(X_train, y_train) # Function to make predictions and display them on a graph def predict_and_plot(dirty, wait, lastyear, usa): # Making prediction for a single input input_data = np.array([[dirty, wait, lastyear, usa]]) predicted_value = model.predict(input_data)[0] # Predicting on test set for comparison y_pred = model.predict(X_test) # Plotting actual vs predicted values plt.figure(figsize=(8, 6)) plt.scatter(range(len(y_test)), y_test, color='blue', label='Actual Values', alpha=0.6) plt.scatter(range(len(y_pred)), y_pred, color='red', label='Predicted Values', alpha=0.6) plt.title('Actual vs Predicted Values') plt.xlabel('Sample Index') plt.ylabel('Value') plt.legend() plt.grid(True) # Save plot to a file and display plt.savefig('output_plot.png') plt.close() return predicted_value, 'output_plot.png' # Creating Gradio UI with gr.Blocks() as demo: gr.Markdown("# Logistic Regression Prediction") with gr.Row(): dirty_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Dirty") wait_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Wait") lastyear_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Last Year") usa_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="USA") predict_button = gr.Button("Predict") predicted_value_output = gr.Textbox(label="Predicted Value") plot_output = gr.Image(label="Actual vs Predicted Graph") predict_button.click( fn=predict_and_plot, inputs=[dirty_slider, wait_slider, lastyear_slider, usa_slider], outputs=[predicted_value_output, plot_output] ) demo.launch()