Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import models, transforms
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
## Define the device
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
# Load the trained model
|
10 |
+
def load_model():
|
11 |
+
model = models.resnet50(pretrained=False)
|
12 |
+
num_classes = 4 # Update based on your rice disease classes
|
13 |
+
model.fc = torch.nn.Sequential(
|
14 |
+
torch.nn.Linear(model.fc.in_features, 256),
|
15 |
+
torch.nn.ReLU(),
|
16 |
+
torch.nn.Linear(256, num_classes)
|
17 |
+
)
|
18 |
+
model.load_state_dict(torch.load(r"/kaggle/input/rice_epoch8/pytorch/default/1/best_model_epoch_8.pth", map_location=device), strict=False)
|
19 |
+
model = model.to(device)
|
20 |
+
model.eval()
|
21 |
+
return model
|
22 |
+
|
23 |
+
# Define preprocessing steps
|
24 |
+
transform = transforms.Compose([
|
25 |
+
transforms.Resize((224, 224)),
|
26 |
+
transforms.ToTensor(),
|
27 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
28 |
+
])
|
29 |
+
|
30 |
+
# Prediction function
|
31 |
+
def predict(image):
|
32 |
+
# Ensure image is in RGB
|
33 |
+
image = image.convert("RGB")
|
34 |
+
|
35 |
+
input_tensor = transform(image).unsqueeze(0).to(device)
|
36 |
+
|
37 |
+
# Perform inference
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(input_tensor)
|
40 |
+
_, predicted_class = torch.max(outputs, 1)
|
41 |
+
|
42 |
+
# Map predicted class index to actual labels
|
43 |
+
class_names = ["Brown Spot", "Healthy", "Leaf Blast", "Neck Blast"]
|
44 |
+
predicted_label = class_names[predicted_class.item()]
|
45 |
+
|
46 |
+
# Calculate confidence scores
|
47 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)[0]
|
48 |
+
confidence = probabilities[predicted_class.item()].item()
|
49 |
+
|
50 |
+
return f"Predicted Disease: {predicted_label}\nConfidence: {confidence*100:.2f}%"
|
51 |
+
|
52 |
+
# Load the model globally
|
53 |
+
model = load_model()
|
54 |
+
|
55 |
+
# Create Gradio interface
|
56 |
+
def launch_interface():
|
57 |
+
# Create a Gradio interface
|
58 |
+
iface = gr.Interface(
|
59 |
+
theme="Subh775/orchid_candy",
|
60 |
+
fn=predict,
|
61 |
+
inputs=gr.Image(type="pil", label="Upload Rice Leaf Image"),
|
62 |
+
outputs=gr.Textbox(label="Prediction Results"),
|
63 |
+
title="Rice Disease Classification",
|
64 |
+
description="Upload a rice leaf image to detect disease type",
|
65 |
+
examples=[
|
66 |
+
["https://doa.gov.lk/wp-content/uploads/2020/06/brownspot3-1024x683.jpg"],
|
67 |
+
["https://arkansascrops.uada.edu/posts/crops/rice/images/Fig%206%20Rice%20leaf%20blast%20coalesced%20lesions.png"],
|
68 |
+
["https://th.bing.com/th/id/OIP._5ejX_5Z-M0cO5c2QUmPlwHaE7?w=280&h=187&c=7&r=0&o=5&dpr=1.1&pid=1.7"],
|
69 |
+
["https://www.weknowrice.com/wp-content/uploads/2022/11/how-to-grow-rice.jpeg"],
|
70 |
+
],
|
71 |
+
allow_flagging="never"
|
72 |
+
)
|
73 |
+
|
74 |
+
return iface
|
75 |
+
|
76 |
+
# Launch the interface
|
77 |
+
if __name__ == "__main__":
|
78 |
+
interface = launch_interface()
|
79 |
+
interface.launch(share=True)
|