Subbu1304 commited on
Commit
e2ae19f
·
verified ·
1 Parent(s): cc7a81e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -8
app.py CHANGED
@@ -3,11 +3,9 @@ import time
3
  import logging
4
  import json
5
  import requests
6
- import torch
7
  from flask import Flask, render_template, request, jsonify, session
8
  from flask_session import Session
9
  from simple_salesforce import Salesforce
10
- from transformers import pipeline, AutoConfig
11
  from gtts import gTTS
12
  from pydub import AudioSegment
13
  from pydub.silence import detect_nonsilent
@@ -30,11 +28,6 @@ try:
30
  except Exception as e:
31
  print(f"❌ Failed to connect to Salesforce: {str(e)}")
32
 
33
- # Whisper ASR Configuration
34
- device = "cuda" if torch.cuda.is_available() else "cpu"
35
- config = AutoConfig.from_pretrained("openai/whisper-small")
36
- config.update({"timeout": 60})
37
-
38
  # Voice prompts
39
  prompts = {
40
  "welcome": "Welcome to Biryani Hub.",
@@ -146,7 +139,7 @@ def transcribe():
146
  if is_silent_audio(output_audio_path):
147
  return jsonify({"error": "No speech detected. Please try again."}), 400
148
 
149
- result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
150
  transcribed_text = result(output_audio_path)["text"].strip().capitalize()
151
 
152
  return jsonify({"text": transcribed_text})
 
3
  import logging
4
  import json
5
  import requests
 
6
  from flask import Flask, render_template, request, jsonify, session
7
  from flask_session import Session
8
  from simple_salesforce import Salesforce
 
9
  from gtts import gTTS
10
  from pydub import AudioSegment
11
  from pydub.silence import detect_nonsilent
 
28
  except Exception as e:
29
  print(f"❌ Failed to connect to Salesforce: {str(e)}")
30
 
 
 
 
 
 
31
  # Voice prompts
32
  prompts = {
33
  "welcome": "Welcome to Biryani Hub.",
 
139
  if is_silent_audio(output_audio_path):
140
  return jsonify({"error": "No speech detected. Please try again."}), 400
141
 
142
+ result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1)
143
  transcribed_text = result(output_audio_path)["text"].strip().capitalize()
144
 
145
  return jsonify({"text": transcribed_text})