Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,28 +5,20 @@ from transformers import pipeline
|
|
5 |
from gtts import gTTS
|
6 |
from pydub import AudioSegment
|
7 |
from pydub.silence import detect_nonsilent
|
|
|
|
|
8 |
from waitress import serve
|
9 |
from simple_salesforce import Salesforce
|
10 |
-
import
|
11 |
-
from transformers import pipeline
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
15 |
-
retry_attempts = 3
|
16 |
-
timeout = 60 # 1 minute timeout for each attempt
|
17 |
-
model = None
|
18 |
-
for attempt in range(retry_attempts):
|
19 |
-
try:
|
20 |
-
model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config={"timeout": timeout})
|
21 |
-
print("Model loaded successfully!")
|
22 |
-
break
|
23 |
-
except requests.exceptions.ReadTimeout:
|
24 |
-
print(f"Timeout occurred, retrying attempt {attempt + 1}/{retry_attempts}...")
|
25 |
-
time.sleep(5) # Retry after 5 seconds
|
26 |
-
|
27 |
# Use whisper-small for faster processing and better speed
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
# Function to generate audio prompts
|
32 |
def generate_audio_prompt(text, filename):
|
@@ -63,7 +55,6 @@ def convert_to_wav(input_path, output_path):
|
|
63 |
audio = AudioSegment.from_file(input_path)
|
64 |
audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono
|
65 |
audio.export(output_path, format="wav")
|
66 |
-
print(f"Converted audio to {output_path}")
|
67 |
except Exception as e:
|
68 |
print(f"Error: {str(e)}")
|
69 |
raise Exception(f"Audio conversion failed: {str(e)}")
|
@@ -110,7 +101,6 @@ def create_salesforce_record(name, email, phone_number):
|
|
110 |
print(f"Error creating Salesforce record: {error_message}")
|
111 |
return {"error": f"Failed to create record in Salesforce: {error_message}"}
|
112 |
|
113 |
-
|
114 |
@app.route("/")
|
115 |
def index():
|
116 |
return render_template("index.html")
|
@@ -137,7 +127,20 @@ def transcribe():
|
|
137 |
print("Audio contains speech, proceeding with transcription.")
|
138 |
|
139 |
# Use Whisper ASR model for transcription
|
140 |
-
result =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
transcribed_text = result["text"].strip().capitalize()
|
142 |
print(f"Transcribed text: {transcribed_text}")
|
143 |
|
|
|
5 |
from gtts import gTTS
|
6 |
from pydub import AudioSegment
|
7 |
from pydub.silence import detect_nonsilent
|
8 |
+
from transformers import AutoConfig # Import AutoConfig for the config object
|
9 |
+
import time
|
10 |
from waitress import serve
|
11 |
from simple_salesforce import Salesforce
|
12 |
+
import requests # Import requests for exception handling
|
|
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Use whisper-small for faster processing and better speed
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
# Create config object to set timeout and other parameters
|
20 |
+
config = AutoConfig.from_pretrained("openai/whisper-small")
|
21 |
+
config.update({"timeout": 60}) # Set timeout to 60 seconds
|
22 |
|
23 |
# Function to generate audio prompts
|
24 |
def generate_audio_prompt(text, filename):
|
|
|
55 |
audio = AudioSegment.from_file(input_path)
|
56 |
audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono
|
57 |
audio.export(output_path, format="wav")
|
|
|
58 |
except Exception as e:
|
59 |
print(f"Error: {str(e)}")
|
60 |
raise Exception(f"Audio conversion failed: {str(e)}")
|
|
|
101 |
print(f"Error creating Salesforce record: {error_message}")
|
102 |
return {"error": f"Failed to create record in Salesforce: {error_message}"}
|
103 |
|
|
|
104 |
@app.route("/")
|
105 |
def index():
|
106 |
return render_template("index.html")
|
|
|
127 |
print("Audio contains speech, proceeding with transcription.")
|
128 |
|
129 |
# Use Whisper ASR model for transcription
|
130 |
+
result = None
|
131 |
+
retry_attempts = 3
|
132 |
+
for attempt in range(retry_attempts):
|
133 |
+
try:
|
134 |
+
result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
|
135 |
+
print(f"Transcribed text: {result['text']}")
|
136 |
+
break
|
137 |
+
except requests.exceptions.ReadTimeout:
|
138 |
+
print(f"Timeout occurred, retrying attempt {attempt + 1}/{retry_attempts}...")
|
139 |
+
time.sleep(5)
|
140 |
+
|
141 |
+
if result is None:
|
142 |
+
return jsonify({"error": "Unable to transcribe audio after retries."}), 500
|
143 |
+
|
144 |
transcribed_text = result["text"].strip().capitalize()
|
145 |
print(f"Transcribed text: {transcribed_text}")
|
146 |
|