# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import sys import numpy as np import torch import nvdiffrast.torch as dr import imageio #---------------------------------------------------------------------------- # Vector operations #---------------------------------------------------------------------------- def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return torch.sum(x*y, -1, keepdim=True) def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: return 2*dot(x, n)*n - x def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: return x / length(x, eps) def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w) #---------------------------------------------------------------------------- # Tonemapping #---------------------------------------------------------------------------- def tonemap_srgb(f: torch.Tensor) -> torch.Tensor: return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f) #---------------------------------------------------------------------------- # sRGB color transforms #---------------------------------------------------------------------------- def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055) def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: assert f.shape[-1] == 3 or f.shape[-1] == 4 out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f) assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] return out def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4)) def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: assert f.shape[-1] == 3 or f.shape[-1] == 4 out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f) assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] return out #---------------------------------------------------------------------------- # Displacement texture lookup #---------------------------------------------------------------------------- def get_miplevels(texture: np.ndarray) -> float: minDim = min(texture.shape[0], texture.shape[1]) return np.floor(np.log2(minDim)) # TODO: Handle wrapping maybe def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor: tex_map = tex_map[None, ...] # Add batch dimension tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False) tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC return tex[0, 0, ...] #---------------------------------------------------------------------------- # Image scaling #---------------------------------------------------------------------------- def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: return scale_img_nhwc(x[None, ...], size, mag, min)[0] def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other" y = x.permute(0, 3, 1, 2) # NHWC -> NCHW if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger y = torch.nn.functional.interpolate(y, size, mode=min) else: # Magnification if mag == 'bilinear' or mag == 'bicubic': y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True) else: y = torch.nn.functional.interpolate(y, size, mode=mag) return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor: y = x.permute(0, 3, 1, 2) # NHWC -> NCHW y = torch.nn.functional.avg_pool2d(y, size) return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC #---------------------------------------------------------------------------- # Behaves similar to tf.segment_sum #---------------------------------------------------------------------------- def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor: num_segments = torch.unique_consecutive(segment_ids).shape[0] # Repeats ids until same dimension as data if len(segment_ids.shape) == 1: s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long() segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:]) assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal" shape = [num_segments] + list(data.shape[1:]) result = torch.zeros(*shape, dtype=torch.float32, device='cuda') result = result.scatter_add(0, segment_ids, data) return result #---------------------------------------------------------------------------- # Projection and transformation matrix helpers. #---------------------------------------------------------------------------- def projection(x=0.1, n=1.0, f=50.0): return np.array([[n/x, 0, 0, 0], [ 0, n/-x, 0, 0], [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], [ 0, 0, -1, 0]]).astype(np.float32) def translate(x, y, z): return np.array([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]]).astype(np.float32) def rotate_x(a): s, c = np.sin(a), np.cos(a) return np.array([[1, 0, 0, 0], [0, c, s, 0], [0, -s, c, 0], [0, 0, 0, 1]]).astype(np.float32) def rotate_y(a): s, c = np.sin(a), np.cos(a) return np.array([[ c, 0, s, 0], [ 0, 1, 0, 0], [-s, 0, c, 0], [ 0, 0, 0, 1]]).astype(np.float32) def scale(s): return np.array([[ s, 0, 0, 0], [ 0, s, 0, 0], [ 0, 0, s, 0], [ 0, 0, 0, 1]]).astype(np.float32) def lookAt(eye, at, up): a = eye - at b = up w = a / np.linalg.norm(a) u = np.cross(b, w) u = u / np.linalg.norm(u) v = np.cross(w, u) translate = np.array([[1, 0, 0, -eye[0]], [0, 1, 0, -eye[1]], [0, 0, 1, -eye[2]], [0, 0, 0, 1]]).astype(np.float32) rotate = np.array([[u[0], u[1], u[2], 0], [v[0], v[1], v[2], 0], [w[0], w[1], w[2], 0], [0, 0, 0, 1]]).astype(np.float32) return np.matmul(rotate, translate) def random_rotation_translation(t): m = np.random.normal(size=[3, 3]) m[1] = np.cross(m[0], m[2]) m[2] = np.cross(m[0], m[1]) m = m / np.linalg.norm(m, axis=1, keepdims=True) m = np.pad(m, [[0, 1], [0, 1]], mode='constant') m[3, 3] = 1.0 m[:3, 3] = np.random.uniform(-t, t, size=[3]) return m #---------------------------------------------------------------------------- # Cosine sample around a vector N #---------------------------------------------------------------------------- def cosine_sample(N : np.ndarray) -> np.ndarray: # construct local frame N = N/np.linalg.norm(N) dx0 = np.array([0, N[2], -N[1]]) dx1 = np.array([-N[2], 0, N[0]]) dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1 dx = dx/np.linalg.norm(dx) dy = np.cross(N,dx) dy = dy/np.linalg.norm(dy) # cosine sampling in local frame phi = 2.0*np.pi*np.random.uniform() s = np.random.uniform() costheta = np.sqrt(s) sintheta = np.sqrt(1.0 - s) # cartesian vector in local space x = np.cos(phi)*sintheta y = np.sin(phi)*sintheta z = costheta # local to world return dx*x + dy*y + N*z #---------------------------------------------------------------------------- # Cosine sampled light directions around the vector N #---------------------------------------------------------------------------- def cosine_sample_texture(res, N : np.ndarray) -> torch.Tensor: # construct local frame N = N/np.linalg.norm(N) dx0 = np.array([0, N[2], -N[1]]) dx1 = np.array([-N[2], 0, N[0]]) dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1 dx = dx/np.linalg.norm(dx) dy = np.cross(N,dx) dy = dy/np.linalg.norm(dy) X = torch.tensor(dx, dtype=torch.float32, device='cuda') Y = torch.tensor(dy, dtype=torch.float32, device='cuda') Z = torch.tensor(N, dtype=torch.float32, device='cuda') # cosine sampling in local frame phi = 2.0*np.pi*torch.rand(res, res, 1, dtype=torch.float32, device='cuda') s = torch.rand(res, res, 1, dtype=torch.float32, device='cuda') costheta = torch.sqrt(s) sintheta = torch.sqrt(1.0 - s) # cartesian vector in local space x = torch.cos(phi)*sintheta y = torch.sin(phi)*sintheta z = costheta # local to world return X*x + Y*y + Z*z #---------------------------------------------------------------------------- # Bilinear downsample by 2x. #---------------------------------------------------------------------------- def bilinear_downsample(x : torch.tensor) -> torch.Tensor: w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 w = w.expand(x.shape[-1], 1, 4, 4) x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1]) return x.permute(0, 2, 3, 1) #---------------------------------------------------------------------------- # Bilinear downsample log(spp) steps #---------------------------------------------------------------------------- def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor: w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 g = x.shape[-1] w = w.expand(g, 1, 4, 4) x = x.permute(0, 3, 1, 2) # NHWC -> NCHW steps = int(np.log2(spp)) for _ in range(steps): xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate') x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g) return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC #---------------------------------------------------------------------------- # Image display function using OpenGL. #---------------------------------------------------------------------------- _glfw_window = None def display_image(image, zoom=None, size=None, title=None): # HWC # Import OpenGL and glfw. import OpenGL.GL as gl import glfw # Zoom image if requested. image = np.asarray(image) if size is not None: assert zoom is None zoom = max(1, size // image.shape[0]) if zoom is not None: image = image.repeat(zoom, axis=0).repeat(zoom, axis=1) height, width, channels = image.shape # Initialize window. if title is None: title = 'Debug window' global _glfw_window if _glfw_window is None: glfw.init() _glfw_window = glfw.create_window(width, height, title, None, None) glfw.make_context_current(_glfw_window) glfw.show_window(_glfw_window) glfw.swap_interval(0) else: glfw.make_context_current(_glfw_window) glfw.set_window_title(_glfw_window, title) glfw.set_window_size(_glfw_window, width, height) # Update window. glfw.poll_events() gl.glClearColor(0, 0, 0, 1) gl.glClear(gl.GL_COLOR_BUFFER_BIT) gl.glWindowPos2f(0, 0) gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1) gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels] gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name] gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1]) glfw.swap_buffers(_glfw_window) if glfw.window_should_close(_glfw_window): return False return True #---------------------------------------------------------------------------- # Image save helper. #---------------------------------------------------------------------------- def save_image(fn, x : np.ndarray) -> np.ndarray: imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8)) def load_image(fn) -> np.ndarray: img = imageio.imread(fn) if img.dtype == np.float32: # HDR image return img else: # LDR image return img.astype(np.float32) / 255 #---------------------------------------------------------------------------- def time_to_text(x): if x > 3600: return "%.2f h" % (x / 3600) elif x > 60: return "%.2f m" % (x / 60) else: return "%.2f s" % x #---------------------------------------------------------------------------- def checkerboard(width, repetitions) -> np.ndarray: tilesize = int(width//repetitions//2) check = np.kron([[1, 0] * repetitions, [0, 1] * repetitions] * repetitions, np.ones((tilesize, tilesize)))*0.33 + 0.33 return np.stack((check, check, check), axis=-1)[None, ...]