|
|
import numpy as np
|
|
|
from PIL import Image
|
|
|
from huggingface_hub import snapshot_download
|
|
|
from leffa.transform import LeffaTransform
|
|
|
from leffa.model import LeffaModel
|
|
|
from leffa.inference import LeffaInference
|
|
|
from leffa_utils.garment_agnostic_mask_predictor import AutoMasker
|
|
|
from leffa_utils.densepose_predictor import DensePosePredictor
|
|
|
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
|
|
|
from preprocess.humanparsing.run_parsing import Parsing
|
|
|
from preprocess.openpose.run_openpose import OpenPose
|
|
|
|
|
|
import gradio as gr
|
|
|
|
|
|
|
|
|
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
|
|
|
|
|
|
|
|
|
class LeffaPredictor(object):
|
|
|
def __init__(self):
|
|
|
self.mask_predictor = AutoMasker(
|
|
|
densepose_path="./ckpts/densepose",
|
|
|
schp_path="./ckpts/schp",
|
|
|
)
|
|
|
|
|
|
self.densepose_predictor = DensePosePredictor(
|
|
|
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
|
|
|
weights_path="./ckpts/densepose/model_final_162be9.pkl",
|
|
|
)
|
|
|
|
|
|
self.parsing = Parsing(
|
|
|
atr_path="./ckpts/humanparsing/parsing_atr.onnx",
|
|
|
lip_path="./ckpts/humanparsing/parsing_lip.onnx",
|
|
|
)
|
|
|
|
|
|
self.openpose = OpenPose(
|
|
|
body_model_path="./ckpts/openpose/body_pose_model.pth",
|
|
|
)
|
|
|
|
|
|
vt_model_hd = LeffaModel(
|
|
|
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
|
|
pretrained_model="./ckpts/virtual_tryon.pth",
|
|
|
dtype="float16",
|
|
|
)
|
|
|
self.vt_inference_hd = LeffaInference(model=vt_model_hd)
|
|
|
|
|
|
vt_model_dc = LeffaModel(
|
|
|
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
|
|
pretrained_model="./ckpts/virtual_tryon_dc.pth",
|
|
|
dtype="float16",
|
|
|
)
|
|
|
self.vt_inference_dc = LeffaInference(model=vt_model_dc)
|
|
|
|
|
|
pt_model = LeffaModel(
|
|
|
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
|
|
pretrained_model="./ckpts/pose_transfer.pth",
|
|
|
dtype="float16",
|
|
|
)
|
|
|
self.pt_inference = LeffaInference(model=pt_model)
|
|
|
|
|
|
def leffa_predict(
|
|
|
self,
|
|
|
src_image_path,
|
|
|
ref_image_path,
|
|
|
control_type,
|
|
|
ref_acceleration=False,
|
|
|
step=50,
|
|
|
scale=2.5,
|
|
|
seed=42,
|
|
|
vt_model_type="viton_hd",
|
|
|
vt_garment_type="upper_body",
|
|
|
vt_repaint=False
|
|
|
):
|
|
|
assert control_type in [
|
|
|
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
|
|
|
src_image = Image.open(src_image_path)
|
|
|
ref_image = Image.open(ref_image_path)
|
|
|
src_image = resize_and_center(src_image, 768, 1024)
|
|
|
ref_image = resize_and_center(ref_image, 768, 1024)
|
|
|
|
|
|
src_image_array = np.array(src_image)
|
|
|
|
|
|
|
|
|
if control_type == "virtual_tryon":
|
|
|
src_image = src_image.convert("RGB")
|
|
|
model_parse, _ = self.parsing(src_image.resize((384, 512)))
|
|
|
keypoints = self.openpose(src_image.resize((384, 512)))
|
|
|
if vt_model_type == "viton_hd":
|
|
|
mask = get_agnostic_mask_hd(
|
|
|
model_parse, keypoints, vt_garment_type)
|
|
|
elif vt_model_type == "dress_code":
|
|
|
mask = get_agnostic_mask_dc(
|
|
|
model_parse, keypoints, vt_garment_type)
|
|
|
mask = mask.resize((768, 1024))
|
|
|
|
|
|
|
|
|
|
|
|
elif control_type == "pose_transfer":
|
|
|
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
|
|
|
|
|
|
|
|
if control_type == "virtual_tryon":
|
|
|
if vt_model_type == "viton_hd":
|
|
|
src_image_seg_array = self.densepose_predictor.predict_seg(
|
|
|
src_image_array)[:, :, ::-1]
|
|
|
src_image_seg = Image.fromarray(src_image_seg_array)
|
|
|
densepose = src_image_seg
|
|
|
elif vt_model_type == "dress_code":
|
|
|
src_image_iuv_array = self.densepose_predictor.predict_iuv(
|
|
|
src_image_array)
|
|
|
src_image_seg_array = src_image_iuv_array[:, :, 0:1]
|
|
|
src_image_seg_array = np.concatenate(
|
|
|
[src_image_seg_array] * 3, axis=-1)
|
|
|
src_image_seg = Image.fromarray(src_image_seg_array)
|
|
|
densepose = src_image_seg
|
|
|
elif control_type == "pose_transfer":
|
|
|
src_image_iuv_array = self.densepose_predictor.predict_iuv(
|
|
|
src_image_array)[:, :, ::-1]
|
|
|
src_image_iuv = Image.fromarray(src_image_iuv_array)
|
|
|
densepose = src_image_iuv
|
|
|
|
|
|
|
|
|
transform = LeffaTransform()
|
|
|
|
|
|
data = {
|
|
|
"src_image": [src_image],
|
|
|
"ref_image": [ref_image],
|
|
|
"mask": [mask],
|
|
|
"densepose": [densepose],
|
|
|
}
|
|
|
data = transform(data)
|
|
|
if control_type == "virtual_tryon":
|
|
|
if vt_model_type == "viton_hd":
|
|
|
inference = self.vt_inference_hd
|
|
|
elif vt_model_type == "dress_code":
|
|
|
inference = self.vt_inference_dc
|
|
|
elif control_type == "pose_transfer":
|
|
|
inference = self.pt_inference
|
|
|
output = inference(
|
|
|
data,
|
|
|
ref_acceleration=ref_acceleration,
|
|
|
num_inference_steps=step,
|
|
|
guidance_scale=scale,
|
|
|
seed=seed,
|
|
|
repaint=vt_repaint,)
|
|
|
gen_image = output["generated_image"][0]
|
|
|
|
|
|
return np.array(gen_image), np.array(mask), np.array(densepose)
|
|
|
|
|
|
def leffa_predict_vt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
|
|
|
return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint)
|
|
|
|
|
|
def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
|
|
|
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
leffa_predictor = LeffaPredictor()
|
|
|
example_dir = "./ckpts/examples"
|
|
|
person1_images = list_dir(f"{example_dir}/person1")
|
|
|
person2_images = list_dir(f"{example_dir}/person2")
|
|
|
garment_images = list_dir(f"{example_dir}/garment")
|
|
|
|
|
|
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
|
|
|
link = """[📚 Paper](https://arxiv.org/abs/2412.08486) - [🤖 Code](https://github.com/franciszzj/Leffa) - [🔥 Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [🤗 Model](https://huggingface.co/franciszzj/Leffa)
|
|
|
|
|
|
Star ⭐ us if you like it!
|
|
|
"""
|
|
|
news = """## News
|
|
|
- 09/Jan/2025. Inference defaults to float16, generating an image in 6 seconds (on A100).
|
|
|
|
|
|
More news can be found in the [GitHub repository](https://github.com/franciszzj/Leffa).
|
|
|
"""
|
|
|
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
|
|
|
note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD/DressCode, and pose transfer uses DeepFashion."
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
|
|
|
gr.Markdown(title)
|
|
|
gr.Markdown(link)
|
|
|
gr.Markdown(news)
|
|
|
gr.Markdown(description)
|
|
|
|
|
|
with gr.Tab("Control Appearance (Virtual Try-on)"):
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
gr.Markdown("#### Person Image")
|
|
|
vt_src_image = gr.Image(
|
|
|
sources=["upload"],
|
|
|
type="filepath",
|
|
|
label="Person Image",
|
|
|
width=512,
|
|
|
height=512,
|
|
|
)
|
|
|
|
|
|
gr.Examples(
|
|
|
inputs=vt_src_image,
|
|
|
examples_per_page=10,
|
|
|
examples=person1_images,
|
|
|
)
|
|
|
|
|
|
with gr.Column():
|
|
|
gr.Markdown("#### Garment Image")
|
|
|
vt_ref_image = gr.Image(
|
|
|
sources=["upload"],
|
|
|
type="filepath",
|
|
|
label="Garment Image",
|
|
|
width=512,
|
|
|
height=512,
|
|
|
)
|
|
|
|
|
|
gr.Examples(
|
|
|
inputs=vt_ref_image,
|
|
|
examples_per_page=10,
|
|
|
examples=garment_images,
|
|
|
)
|
|
|
|
|
|
with gr.Column():
|
|
|
gr.Markdown("#### Generated Image")
|
|
|
vt_gen_image = gr.Image(
|
|
|
label="Generated Image",
|
|
|
width=512,
|
|
|
height=512,
|
|
|
)
|
|
|
|
|
|
with gr.Row():
|
|
|
vt_gen_button = gr.Button("Generate")
|
|
|
|
|
|
with gr.Accordion("Advanced Options", open=False):
|
|
|
vt_model_type = gr.Radio(
|
|
|
label="Model Type",
|
|
|
choices=[("VITON-HD (Recommended)", "viton_hd"),
|
|
|
("DressCode (Experimental)", "dress_code")],
|
|
|
value="viton_hd",
|
|
|
)
|
|
|
|
|
|
vt_garment_type = gr.Radio(
|
|
|
label="Garment Type",
|
|
|
choices=[("Upper", "upper_body"),
|
|
|
("Lower", "lower_body"),
|
|
|
("Dress", "dresses")],
|
|
|
value="upper_body",
|
|
|
)
|
|
|
|
|
|
vt_ref_acceleration = gr.Radio(
|
|
|
label="Accelerate Reference UNet (may slightly reduce performance)",
|
|
|
choices=[("True", True), ("False", False)],
|
|
|
value=False,
|
|
|
)
|
|
|
|
|
|
vt_repaint = gr.Radio(
|
|
|
label="Repaint Mode",
|
|
|
choices=[("True", True), ("False", False)],
|
|
|
value=False,
|
|
|
)
|
|
|
|
|
|
vt_step = gr.Number(
|
|
|
label="Inference Steps", minimum=30, maximum=100, step=1, value=30)
|
|
|
|
|
|
vt_scale = gr.Number(
|
|
|
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
|
|
|
|
|
|
vt_seed = gr.Number(
|
|
|
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
|
|
|
|
|
with gr.Accordion("Debug", open=False):
|
|
|
vt_mask = gr.Image(
|
|
|
label="Generated Mask",
|
|
|
width=256,
|
|
|
height=256,
|
|
|
)
|
|
|
|
|
|
vt_densepose = gr.Image(
|
|
|
label="Generated DensePose",
|
|
|
width=256,
|
|
|
height=256,
|
|
|
)
|
|
|
|
|
|
vt_gen_button.click(fn=leffa_predictor.leffa_predict_vt, inputs=[
|
|
|
vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint], outputs=[vt_gen_image, vt_mask, vt_densepose])
|
|
|
|
|
|
with gr.Tab("Control Pose (Pose Transfer)"):
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
gr.Markdown("#### Person Image")
|
|
|
pt_ref_image = gr.Image(
|
|
|
sources=["upload"],
|
|
|
type="filepath",
|
|
|
label="Person Image",
|
|
|
width=512,
|
|
|
height=512,
|
|
|
)
|
|
|
|
|
|
gr.Examples(
|
|
|
inputs=pt_ref_image,
|
|
|
examples_per_page=10,
|
|
|
examples=person1_images,
|
|
|
)
|
|
|
|
|
|
with gr.Column():
|
|
|
gr.Markdown("#### Target Pose Person Image")
|
|
|
pt_src_image = gr.Image(
|
|
|
sources=["upload"],
|
|
|
type="filepath",
|
|
|
label="Target Pose Person Image",
|
|
|
width=512,
|
|
|
height=512,
|
|
|
)
|
|
|
|
|
|
gr.Examples(
|
|
|
inputs=pt_src_image,
|
|
|
examples_per_page=10,
|
|
|
examples=person2_images,
|
|
|
)
|
|
|
|
|
|
with gr.Column():
|
|
|
gr.Markdown("#### Generated Image")
|
|
|
pt_gen_image = gr.Image(
|
|
|
label="Generated Image",
|
|
|
width=512,
|
|
|
height=512,
|
|
|
)
|
|
|
|
|
|
with gr.Row():
|
|
|
pose_transfer_gen_button = gr.Button("Generate")
|
|
|
|
|
|
with gr.Accordion("Advanced Options", open=False):
|
|
|
pt_ref_acceleration = gr.Radio(
|
|
|
label="Accelerate Reference UNet",
|
|
|
choices=[("True", True), ("False", False)],
|
|
|
value=False,
|
|
|
)
|
|
|
|
|
|
pt_step = gr.Number(
|
|
|
label="Inference Steps", minimum=30, maximum=100, step=1, value=30)
|
|
|
|
|
|
pt_scale = gr.Number(
|
|
|
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
|
|
|
|
|
|
pt_seed = gr.Number(
|
|
|
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
|
|
|
|
|
with gr.Accordion("Debug", open=False):
|
|
|
pt_mask = gr.Image(
|
|
|
label="Generated Mask",
|
|
|
width=256,
|
|
|
height=256,
|
|
|
)
|
|
|
|
|
|
pt_densepose = gr.Image(
|
|
|
label="Generated DensePose",
|
|
|
width=256,
|
|
|
height=256,
|
|
|
)
|
|
|
|
|
|
pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[
|
|
|
pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image, pt_mask, pt_densepose])
|
|
|
|
|
|
gr.Markdown(note)
|
|
|
|
|
|
demo.launch(share=True, server_port=7860,
|
|
|
allowed_paths=["./ckpts/examples"]) |