import torch def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None): """torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension. Args: input (torch.Tensor): The input tensor containing probabilities. num_samples (int): Number of samples to draw. replacement (bool): Whether to draw with replacement or not. Keywords args: generator (torch.Generator): A pseudorandom number generator for sampling. Returns: torch.Tensor: Last dimension contains num_samples indices sampled from the multinomial probability distribution located in the last dimension of tensor input. """ if num_samples == 1: q = torch.empty_like(input).exponential_(1, generator=generator) return torch.argmax(input / q, dim=-1, keepdim=True).to(torch.int64) input_ = input.reshape(-1, input.shape[-1]) output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator) output = output_.reshape(*list(input.shape[:-1]), -1) return output def apply_top_k( probs: torch.Tensor, k: int, ) -> torch.Tensor: """Sample next token from top K values along the last dimension of the input probs tensor. Args: probs (torch.Tensor): Input probabilities with token candidates on the last dimension. k (int): The k in “top-k”. Returns: torch.Tensor: Sampled tokens. """ v, _ = torch.topk(probs, min(k, probs.size(-1))) pivot = v.select(-1, -1).unsqueeze(-1) probs = torch.where(probs < pivot, 0.0, probs) probs.div_(probs.sum(dim=-1, keepdim=True)) return probs def apply_top_p(probs: torch.Tensor, p: float) -> torch.Tensor: """Sample next token from top P probabilities along the last dimension of the input probs tensor. Args: probs (torch.Tensor): Input probabilities with token candidates on the last dimension. p (int): The p in “top-p”. Returns: torch.Tensor: Sampled tokens. """ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort *= (~mask).float() probs = probs.scatter(-1, probs_idx, probs_sort) probs.div_(probs.sum(dim=-1, keepdim=True)) return probs def apply_min_p(probs: torch.Tensor, min_p: float) -> torch.Tensor: """Sample next token using min-p sampling. Args: scores (torch.FloatTensor): Input logits with token candidates on the last dimension. min_p (float): Minimum token probability, scaled by the probability of the most likely token. Must be between 0 and 1. Typical values are in the 0.01-0.2 range. Returns: torch.Tensor: Sampled tokens. """ top_probs, _ = probs.max(dim=-1, keepdim=True) tokens_to_remove = probs < (min_p * top_probs) probs = probs.masked_fill(tokens_to_remove, 0.0) probs.div_(probs.sum(dim=-1, keepdim=True)) return probs def modify_logit_for_repetition_penalty( logits: torch.Tensor, generated_tokens: torch.Tensor, repetition_penalty: float, repetition_penalty_window: int, ): """See https://arxiv.org/abs/1909.05858 Apply repetition penalty over a sliding window of the last `repetition_penalty_window` tokens. logits: (batch_size, n_codebooks, vocab_size) generated_tokens: (batch_size, n_codebooks, seq_len) """ generated_tokens = generated_tokens[..., -repetition_penalty_window:] generated_tokens = generated_tokens.clamp_max(logits.shape[-1] - 1).to(torch.int64) rp = torch.full_like(logits, repetition_penalty) factors = torch.ones_like(logits).scatter_reduce(2, generated_tokens, rp, reduce="prod") return torch.where(logits <= 0, logits * factors, logits / factors) def sample_from_logits( logits: torch.Tensor, temperature: float = 1.0, top_p: float = 0.0, top_k: int = 0, min_p: float = 0.0, generated_tokens: torch.Tensor | None = None, repetition_penalty: float = 3.0, repetition_penalty_window: float = 2, ) -> torch.Tensor: """Sample next token from logits using temperature, top-p, top-k, or min-p sampling. Args: logits (torch.Tensor): Input logits with token candidates on the last dimension. temperature (float): Sampling temperature. Lower temperature results in more deterministic samples. top_p (float): The p in “top-p”. top_k (int): The k in “top-k”. min_p (float): Minimum token probability, scaled by the probability of the most likely token. Must be between 0 and 1. Typical values are in the 0.01-0.2 range. Returns: torch.Tensor: Sampled tokens. """ if repetition_penalty != 1.0 and generated_tokens is not None: logits = modify_logit_for_repetition_penalty(logits, generated_tokens, repetition_penalty, repetition_penalty_window) if temperature > 0: probs = torch.softmax(logits / temperature, dim=-1) if top_p > 0: probs = apply_top_p(probs, top_p) if top_k > 0: probs = apply_top_k(probs, top_k) if min_p > 0: probs = apply_min_p(probs, min_p) next_token = multinomial(probs, num_samples=1) else: next_token = torch.argmax(logits, dim=-1, keepdim=True) return next_token # [batch_size, num_codebooks, 1]