import math import torch import torchaudio from transformers.models.dac import DacModel class DACAutoencoder: def __init__(self): super().__init__() self.dac = DacModel.from_pretrained("descript/dac_44khz") self.dac.eval().requires_grad_(False) self.codebook_size = self.dac.config.codebook_size self.num_codebooks = self.dac.quantizer.n_codebooks self.sampling_rate = self.dac.config.sampling_rate def preprocess(self, wav: torch.Tensor, sr: int) -> torch.Tensor: wav = torchaudio.functional.resample(wav, sr, 44_100) right_pad = math.ceil(wav.shape[-1] / 512) * 512 - wav.shape[-1] return torch.nn.functional.pad(wav, (0, right_pad)) def encode(self, wav: torch.Tensor) -> torch.Tensor: return self.dac.encode(wav).audio_codes def decode(self, codes: torch.Tensor) -> torch.Tensor: return self.dac.decode(audio_codes=codes).audio_values.unsqueeze(1)