import json from typing import Callable import safetensors import torch import torch.nn as nn from huggingface_hub import hf_hub_download from mamba_ssm.utils.generation import InferenceParams from tqdm import tqdm from zonos.autoencoder import DACAutoencoder from zonos.backbone import ZonosBackbone from zonos.codebook_pattern import apply_delay_pattern, revert_delay_pattern from zonos.conditioning import PrefixConditioner from zonos.config import ZonosConfig from zonos.sampling import sample_from_logits from zonos.speaker_cloning import SpeakerEmbeddingLDA class Zonos(nn.Module): def __init__(self, config: ZonosConfig): super().__init__() self.config = config dim = config.backbone.d_model self.eos_token_id = config.eos_token_id self.masked_token_id = config.masked_token_id self.autoencoder = DACAutoencoder() self.backbone = ZonosBackbone(config.backbone) self.prefix_conditioner = PrefixConditioner(config.prefix_conditioner, dim) self.spk_clone_model = None # TODO: pad to multiple of at least 8 self.embeddings = nn.ModuleList([nn.Embedding(1026, dim) for _ in range(self.autoencoder.num_codebooks)]) self.heads = nn.ModuleList([nn.Linear(dim, 1025, bias=False) for _ in range(self.autoencoder.num_codebooks)]) self._cg_graph = None self._cg_batch_size = None self._cg_input_ids = None self._cg_logits = None self._cg_inference_params = None self._cg_scale = None @classmethod def from_pretrained(cls, repo_id: str, revision: str | None = None, device: str = "cuda") -> "Zonos": config_path = hf_hub_download(repo_id=repo_id, filename="config.json", revision=revision) model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors", revision=revision) return cls.from_local(config_path, model_path, device) @classmethod def from_local(cls, config_path: str, model_path: str, device: str = "cuda") -> "Zonos": config = ZonosConfig.from_dict(json.load(open(config_path))) model = cls(config).to(device, torch.bfloat16) model.autoencoder.dac.to(device) sd = model.state_dict() with safetensors.safe_open(model_path, framework="pt") as f: for k in f.keys(): sd[k] = f.get_tensor(k) model.load_state_dict(sd) return model def make_speaker_embedding(self, wav: torch.Tensor, sr: int) -> torch.Tensor: """Generate a speaker embedding from an audio clip.""" if self.spk_clone_model is None: self.spk_clone_model = SpeakerEmbeddingLDA() _, spk_embedding = self.spk_clone_model(wav.to(self.spk_clone_model.device), sr) return spk_embedding.unsqueeze(0).bfloat16() def embed_codes(self, codes: torch.Tensor) -> torch.Tensor: return sum(emb(codes[:, i]) for i, emb in enumerate(self.embeddings)) def apply_heads(self, hidden_states: torch.Tensor) -> torch.Tensor: return torch.stack([head(hidden_states) for head in self.heads], dim=1) def _compute_logits( self, hidden_states: torch.Tensor, inference_params: InferenceParams, cfg_scale: float ) -> torch.Tensor: """ Pass `hidden_states` into `backbone` and `multi_head`, applying classifier-free guidance if `cfg_scale != 1.0`. """ last_hidden_states = self.backbone(hidden_states, inference_params)[:, -1, :].unsqueeze(1) logits = self.apply_heads(last_hidden_states).squeeze(2).float() if cfg_scale != 1.0: cond_logits, uncond_logits = logits.chunk(2) logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale return logits def _decode_one_token( self, input_ids: torch.Tensor, inference_params: InferenceParams, cfg_scale: float, ) -> torch.Tensor: """ Single-step decode. Prepares the hidden states, possibly replicates them for CFG, and then delegates to `_compute_logits`. Below we wrap this function with a simple CUDA Graph capturing mechanism, doing 3 warmup steps if needed and then capturing or replaying the graph. We only recapture if the batch size changes. """ # TODO: support cfg_scale==1 if cfg_scale == 1.0: hidden_states = self.embed_codes(input_ids) return self._compute_logits(hidden_states, inference_params, cfg_scale) bsz = input_ids.size(0) need_capture = (self._cg_graph is None) or (self._cg_batch_size != bsz) if need_capture: self._cg_graph = None self._cg_batch_size = bsz self._cg_inference_params = inference_params self._cg_scale = cfg_scale for _ in range(3): hidden_states = self.embed_codes(input_ids) hidden_states = hidden_states.repeat(2, 1, 1) # because cfg != 1.0 logits = self._compute_logits(hidden_states, inference_params, cfg_scale) self._cg_input_ids = input_ids.clone() self._cg_logits = torch.empty_like(logits) g = torch.cuda.CUDAGraph() def capture_region(): hidden_states_local = self.embed_codes(self._cg_input_ids) hidden_states_local = hidden_states_local.repeat(2, 1, 1) self._cg_logits = self._compute_logits(hidden_states_local, self._cg_inference_params, self._cg_scale) with torch.cuda.graph(g): capture_region() self._cg_graph = g else: self._cg_input_ids.copy_(input_ids) self._cg_graph.replay() return self._cg_logits def _prefill( self, prefix_hidden_states: torch.Tensor, input_ids: torch.Tensor, inference_params: InferenceParams, cfg_scale: float, ) -> torch.Tensor: """ "Prefill" mode: we already have `prefix_hidden_states`, and we want to append new embeddings, then compute the logits. """ # Replicate input_ids if CFG is enabled if cfg_scale != 1.0: input_ids = input_ids.expand(prefix_hidden_states.shape[0], -1, -1) hidden_states = torch.cat([prefix_hidden_states, self.embed_codes(input_ids)], dim=1) return self._compute_logits(hidden_states, inference_params, cfg_scale) def setup_cache(self, batch_size: int, max_seqlen: int, dtype: torch.dtype = torch.bfloat16) -> InferenceParams: key_value_memory_dict = { i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype) for i, layer in enumerate(self.backbone.layers) } lengths_per_sample = torch.full((batch_size,), 0, dtype=torch.int32, device="cuda") return InferenceParams(max_seqlen, batch_size, 0, 0, key_value_memory_dict, lengths_per_sample) def prepare_conditioning(self, cond_dict: dict, uncond_dict: dict | None = None) -> torch.Tensor: if uncond_dict is None: uncond_dict = {k: cond_dict[k] for k in self.prefix_conditioner.required_keys} return torch.cat( [ self.prefix_conditioner(cond_dict), self.prefix_conditioner(uncond_dict), ] ) @torch.inference_mode() def generate( self, prefix_conditioning: torch.Tensor, # [bsz, cond_seq_len, d_model] audio_prefix_codes: torch.Tensor | None = None, # [bsz, 9, prefix_audio_seq_len] max_new_tokens: int = 86 * 30, cfg_scale: float = 2.0, batch_size: int = 1, sampling_params: dict = dict(min_p=0.1), progress_bar: bool = True, callback: Callable[[torch.Tensor, int, int], bool] | None = None, ): assert cfg_scale != 1, "TODO: add support for cfg_scale=1" prefix_audio_len = 0 if audio_prefix_codes is None else audio_prefix_codes.shape[2] unknown_token = -1 audio_seq_len = prefix_audio_len + max_new_tokens seq_len = prefix_conditioning.shape[1] + audio_seq_len inference_params = self.setup_cache(batch_size=batch_size * 2, max_seqlen=seq_len) codes = torch.full((batch_size, 9, audio_seq_len), unknown_token, device="cuda") if audio_prefix_codes is not None: codes[..., :prefix_audio_len] = audio_prefix_codes delayed_codes = apply_delay_pattern(codes, self.masked_token_id) delayed_prefix_audio_codes = delayed_codes[..., : prefix_audio_len + 1] logits = self._prefill(prefix_conditioning, delayed_prefix_audio_codes, inference_params, cfg_scale) next_token = sample_from_logits(logits, **sampling_params) offset = delayed_prefix_audio_codes.shape[2] frame = delayed_codes[..., offset : offset + 1] frame.masked_scatter_(frame == unknown_token, next_token) prefix_length = prefix_conditioning.shape[1] + prefix_audio_len + 1 inference_params.seqlen_offset += prefix_length inference_params.lengths_per_sample[:] += prefix_length logit_bias = torch.zeros_like(logits) logit_bias[:, 1:, self.eos_token_id] = -torch.inf # only allow codebook 0 to predict EOS stopping = torch.zeros(batch_size, dtype=torch.bool, device="cuda") max_steps = delayed_codes.shape[2] - offset remaining_steps = torch.full((batch_size,), max_steps, device="cuda") progress = tqdm(total=max_steps, desc="Generating", disable=not progress_bar) step = 0 while torch.max(remaining_steps) > 0: offset += 1 input_ids = delayed_codes[..., offset - 1 : offset] logits = self._decode_one_token(input_ids, inference_params, cfg_scale) next_token = sample_from_logits(logits, generated_tokens=delayed_codes[..., :offset], **sampling_params) eos_in_cb0 = next_token[:, 0] == self.eos_token_id remaining_steps[eos_in_cb0[:, 0]] = torch.minimum(remaining_steps[eos_in_cb0[:, 0]], torch.tensor(9)) stopping |= eos_in_cb0[:, 0] eos_codebook_idx = 9 - remaining_steps eos_codebook_idx = torch.clamp(eos_codebook_idx, max=9 - 1) for i in range(next_token.shape[0]): if stopping[i]: idx = eos_codebook_idx[i].item() next_token[i, :idx] = self.masked_token_id next_token[i, idx] = self.eos_token_id frame = delayed_codes[..., offset : offset + 1] frame.masked_scatter_(frame == unknown_token, next_token) inference_params.seqlen_offset += 1 inference_params.lengths_per_sample[:] += 1 remaining_steps -= 1 progress.update() step += 1 if callback is not None and not callback(frame, step, max_steps): break out_codes = revert_delay_pattern(delayed_codes) out_codes.masked_fill_(out_codes >= 1024, 0) out_codes = out_codes[..., : offset - 9] self._cg_graph = None # reset cuda graph to avoid cache changes return out_codes