Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,404 +3,72 @@ import torchaudio
|
|
3 |
import gradio as gr
|
4 |
|
5 |
from zonos.model import Zonos
|
6 |
-
from zonos.conditioning import make_cond_dict
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
def
|
14 |
-
global CURRENT_MODEL_TYPE, CURRENT_MODEL
|
15 |
-
if CURRENT_MODEL_TYPE != model_choice:
|
16 |
-
if CURRENT_MODEL is not None:
|
17 |
-
del CURRENT_MODEL
|
18 |
-
torch.cuda.empty_cache()
|
19 |
-
print(f"Loading {model_choice} model...")
|
20 |
-
if model_choice == "Transformer":
|
21 |
-
CURRENT_MODEL = Zonos.from_pretrained("Zyphra/Zonos-v0.1-transformer", device=device)
|
22 |
-
else:
|
23 |
-
CURRENT_MODEL = Zonos.from_pretrained("Zyphra/Zonos-v0.1-hybrid", device=device)
|
24 |
-
CURRENT_MODEL.to(device)
|
25 |
-
CURRENT_MODEL.bfloat16()
|
26 |
-
CURRENT_MODEL.eval()
|
27 |
-
CURRENT_MODEL_TYPE = model_choice
|
28 |
-
print(f"{model_choice} model loaded successfully!")
|
29 |
-
else:
|
30 |
-
print(f"{model_choice} model is already loaded.")
|
31 |
-
return CURRENT_MODEL
|
32 |
-
|
33 |
-
|
34 |
-
def update_ui(model_choice):
|
35 |
-
"""
|
36 |
-
Dynamically show/hide UI elements based on the model's conditioners.
|
37 |
-
We do NOT display 'language_id' or 'ctc_loss' even if they exist in the model.
|
38 |
-
"""
|
39 |
-
model = load_model_if_needed(model_choice)
|
40 |
-
cond_names = [c.name for c in model.prefix_conditioner.conditioners]
|
41 |
-
print("Conditioners in this model:", cond_names)
|
42 |
-
|
43 |
-
text_update = gr.update(visible=("espeak" in cond_names))
|
44 |
-
language_update = gr.update(visible=("espeak" in cond_names))
|
45 |
-
speaker_audio_update = gr.update(visible=("speaker" in cond_names))
|
46 |
-
prefix_audio_update = gr.update(visible=True)
|
47 |
-
skip_speaker_update = gr.update(visible=("speaker" in cond_names))
|
48 |
-
skip_emotion_update = gr.update(visible=("emotion" in cond_names))
|
49 |
-
emotion1_update = gr.update(visible=("emotion" in cond_names))
|
50 |
-
emotion2_update = gr.update(visible=("emotion" in cond_names))
|
51 |
-
emotion3_update = gr.update(visible=("emotion" in cond_names))
|
52 |
-
emotion4_update = gr.update(visible=("emotion" in cond_names))
|
53 |
-
emotion5_update = gr.update(visible=("emotion" in cond_names))
|
54 |
-
emotion6_update = gr.update(visible=("emotion" in cond_names))
|
55 |
-
emotion7_update = gr.update(visible=("emotion" in cond_names))
|
56 |
-
emotion8_update = gr.update(visible=("emotion" in cond_names))
|
57 |
-
skip_vqscore_8_update = gr.update(visible=("vqscore_8" in cond_names))
|
58 |
-
vq_single_slider_update = gr.update(visible=("vqscore_8" in cond_names))
|
59 |
-
fmax_slider_update = gr.update(visible=("fmax" in cond_names))
|
60 |
-
skip_fmax_update = gr.update(visible=("fmax" in cond_names))
|
61 |
-
pitch_std_slider_update = gr.update(visible=("pitch_std" in cond_names))
|
62 |
-
skip_pitch_std_update = gr.update(visible=("pitch_std" in cond_names))
|
63 |
-
speaking_rate_slider_update = gr.update(visible=("speaking_rate" in cond_names))
|
64 |
-
skip_speaking_rate_update = gr.update(visible=("speaking_rate" in cond_names))
|
65 |
-
dnsmos_slider_update = gr.update(visible=("dnsmos_ovrl" in cond_names))
|
66 |
-
skip_dnsmos_ovrl_update = gr.update(visible=("dnsmos_ovrl" in cond_names))
|
67 |
-
speaker_noised_checkbox_update = gr.update(visible=("speaker_noised" in cond_names))
|
68 |
-
skip_speaker_noised_update = gr.update(visible=("speaker_noised" in cond_names))
|
69 |
-
|
70 |
-
return (
|
71 |
-
text_update, # 1
|
72 |
-
language_update, # 2
|
73 |
-
speaker_audio_update, # 3
|
74 |
-
prefix_audio_update, # 4
|
75 |
-
skip_speaker_update, # 5
|
76 |
-
skip_emotion_update, # 6
|
77 |
-
emotion1_update, # 7
|
78 |
-
emotion2_update, # 8
|
79 |
-
emotion3_update, # 9
|
80 |
-
emotion4_update, # 10
|
81 |
-
emotion5_update, # 11
|
82 |
-
emotion6_update, # 12
|
83 |
-
emotion7_update, # 13
|
84 |
-
emotion8_update, # 14
|
85 |
-
skip_vqscore_8_update, # 15
|
86 |
-
vq_single_slider_update, # 16
|
87 |
-
fmax_slider_update, # 17
|
88 |
-
skip_fmax_update, # 18
|
89 |
-
pitch_std_slider_update, # 19
|
90 |
-
skip_pitch_std_update, # 20
|
91 |
-
speaking_rate_slider_update, # 21
|
92 |
-
skip_speaking_rate_update, # 22
|
93 |
-
dnsmos_slider_update, # 23
|
94 |
-
skip_dnsmos_ovrl_update, # 24
|
95 |
-
speaker_noised_checkbox_update, # 25
|
96 |
-
skip_speaker_noised_update, # 26
|
97 |
-
)
|
98 |
-
|
99 |
-
|
100 |
-
def generate_audio(
|
101 |
-
model_choice,
|
102 |
-
text,
|
103 |
-
language,
|
104 |
-
speaker_audio,
|
105 |
-
prefix_audio,
|
106 |
-
skip_speaker,
|
107 |
-
skip_emotion,
|
108 |
-
e1,
|
109 |
-
e2,
|
110 |
-
e3,
|
111 |
-
e4,
|
112 |
-
e5,
|
113 |
-
e6,
|
114 |
-
e7,
|
115 |
-
e8,
|
116 |
-
skip_vqscore_8,
|
117 |
-
vq_single,
|
118 |
-
fmax,
|
119 |
-
skip_fmax,
|
120 |
-
pitch_std,
|
121 |
-
skip_pitch_std,
|
122 |
-
speaking_rate,
|
123 |
-
skip_speaking_rate,
|
124 |
-
dnsmos_ovrl,
|
125 |
-
skip_dnsmos_ovrl,
|
126 |
-
speaker_noised,
|
127 |
-
skip_speaker_noised,
|
128 |
-
cfg_scale,
|
129 |
-
min_p,
|
130 |
-
seed,
|
131 |
-
):
|
132 |
"""
|
133 |
-
|
134 |
-
|
135 |
"""
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
if
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
if skip_speaker_noised:
|
154 |
-
uncond_keys.append("speaker_noised")
|
155 |
-
|
156 |
-
speaker_noised_bool = bool(speaker_noised)
|
157 |
-
fmax = float(fmax)
|
158 |
-
pitch_std = float(pitch_std)
|
159 |
-
speaking_rate = float(speaking_rate)
|
160 |
-
dnsmos_ovrl = float(dnsmos_ovrl)
|
161 |
-
cfg_scale = float(cfg_scale)
|
162 |
-
min_p = float(min_p)
|
163 |
-
seed = int(seed)
|
164 |
-
max_new_tokens = 86 * 30
|
165 |
-
|
166 |
-
torch.manual_seed(seed)
|
167 |
-
|
168 |
-
speaker_embedding = None
|
169 |
-
if speaker_audio is not None and not skip_speaker:
|
170 |
-
wav, sr = torchaudio.load(speaker_audio)
|
171 |
-
speaker_embedding = selected_model.make_speaker_embedding(wav, sr)
|
172 |
-
speaker_embedding = speaker_embedding.to(device, dtype=torch.bfloat16)
|
173 |
-
|
174 |
-
audio_prefix_codes = None
|
175 |
-
if prefix_audio is not None:
|
176 |
-
wav_prefix, sr_prefix = torchaudio.load(prefix_audio)
|
177 |
-
wav_prefix = wav_prefix.mean(0, keepdim=True)
|
178 |
-
wav_prefix = torchaudio.functional.resample(wav_prefix, sr_prefix, selected_model.autoencoder.sampling_rate)
|
179 |
-
wav_prefix = wav_prefix.to(device, dtype=torch.float32)
|
180 |
-
with torch.autocast(device, dtype=torch.float32):
|
181 |
-
audio_prefix_codes = selected_model.autoencoder.encode(wav_prefix.unsqueeze(0))
|
182 |
-
|
183 |
-
emotion_tensor = torch.tensor(
|
184 |
-
[[float(e1), float(e2), float(e3), float(e4), float(e5), float(e6), float(e7), float(e8)]], device=device
|
185 |
-
)
|
186 |
-
|
187 |
-
vq_val = float(vq_single)
|
188 |
-
vq_tensor = torch.tensor([vq_val] * 8, device=device).unsqueeze(0)
|
189 |
-
|
190 |
cond_dict = make_cond_dict(
|
191 |
text=text,
|
192 |
-
|
193 |
-
|
194 |
-
emotion=emotion_tensor,
|
195 |
-
vqscore_8=vq_tensor,
|
196 |
-
fmax=fmax,
|
197 |
-
pitch_std=pitch_std,
|
198 |
-
speaking_rate=speaking_rate,
|
199 |
-
dnsmos_ovrl=dnsmos_ovrl,
|
200 |
-
speaker_noised=speaker_noised_bool,
|
201 |
-
device=device,
|
202 |
-
unconditional_keys=uncond_keys,
|
203 |
-
)
|
204 |
-
conditioning = selected_model.prepare_conditioning(cond_dict)
|
205 |
-
|
206 |
-
codes = selected_model.generate(
|
207 |
-
prefix_conditioning=conditioning,
|
208 |
-
audio_prefix_codes=audio_prefix_codes,
|
209 |
-
max_new_tokens=max_new_tokens,
|
210 |
-
cfg_scale=cfg_scale,
|
211 |
-
batch_size=1,
|
212 |
-
sampling_params=dict(min_p=min_p),
|
213 |
)
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
with gr.Column():
|
247 |
-
speaker_audio = gr.Audio(
|
248 |
-
label="Optional Speaker Audio (for cloning)",
|
249 |
-
type="filepath",
|
250 |
-
)
|
251 |
-
speaker_noised_checkbox = gr.Checkbox(label="Denoise Speaker?", value=False)
|
252 |
-
|
253 |
-
with gr.Column():
|
254 |
-
gr.Markdown("## Conditioning Parameters")
|
255 |
-
|
256 |
-
with gr.Row():
|
257 |
-
dnsmos_slider = gr.Slider(1.0, 5.0, value=4.0, step=0.1, label="DNSMOS Overall")
|
258 |
-
fmax_slider = gr.Slider(0, 24000, value=22050, step=1, label="Fmax (Hz)")
|
259 |
-
vq_single_slider = gr.Slider(0.5, 0.8, 0.78, 0.01, label="VQ Score")
|
260 |
-
pitch_std_slider = gr.Slider(0.0, 400.0, value=20.0, step=1, label="Pitch Std")
|
261 |
-
speaking_rate_slider = gr.Slider(0.0, 40.0, value=15.0, step=1, label="Speaking Rate")
|
262 |
-
|
263 |
-
gr.Markdown("### Emotion Sliders")
|
264 |
-
with gr.Row():
|
265 |
-
emotion1 = gr.Slider(0.0, 1.0, 0.6, 0.05, label="Happiness")
|
266 |
-
emotion2 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Sadness")
|
267 |
-
emotion3 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Disgust")
|
268 |
-
emotion4 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Fear")
|
269 |
-
with gr.Row():
|
270 |
-
emotion5 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Surprise")
|
271 |
-
emotion6 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Anger")
|
272 |
-
emotion7 = gr.Slider(0.0, 1.0, 0.5, 0.05, label="Other")
|
273 |
-
emotion8 = gr.Slider(0.0, 1.0, 0.6, 0.05, label="Neutral")
|
274 |
-
|
275 |
-
gr.Markdown("### Unconditional Toggles")
|
276 |
-
with gr.Row():
|
277 |
-
skip_speaker = gr.Checkbox(label="Skip Speaker", value=False)
|
278 |
-
skip_emotion = gr.Checkbox(label="Skip Emotion", value=False)
|
279 |
-
skip_vqscore_8 = gr.Checkbox(label="Skip VQ Score", value=True)
|
280 |
-
skip_fmax = gr.Checkbox(label="Skip Fmax", value=False)
|
281 |
-
skip_pitch_std = gr.Checkbox(label="Skip Pitch Std", value=False)
|
282 |
-
skip_speaking_rate = gr.Checkbox(label="Skip Speaking Rate", value=False)
|
283 |
-
skip_dnsmos_ovrl = gr.Checkbox(label="Skip DNSMOS", value=True)
|
284 |
-
skip_speaker_noised = gr.Checkbox(label="Skip Noised Speaker", value=False)
|
285 |
-
|
286 |
-
with gr.Column():
|
287 |
-
gr.Markdown("## Generation Parameters")
|
288 |
-
with gr.Row():
|
289 |
-
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="CFG Scale")
|
290 |
-
min_p_slider = gr.Slider(0.0, 1.0, 0.1, 0.01, label="Min P")
|
291 |
-
seed_number = gr.Number(label="Seed", value=420, precision=0)
|
292 |
-
|
293 |
-
generate_button = gr.Button("Generate Audio")
|
294 |
-
output_audio = gr.Audio(label="Generated Audio", type="numpy")
|
295 |
-
|
296 |
-
model_choice.change(
|
297 |
-
fn=update_ui,
|
298 |
-
inputs=[model_choice],
|
299 |
-
outputs=[
|
300 |
-
text, # 1
|
301 |
-
language, # 2
|
302 |
-
speaker_audio, # 3
|
303 |
-
prefix_audio, # 4
|
304 |
-
skip_speaker, # 5
|
305 |
-
skip_emotion, # 6
|
306 |
-
emotion1, # 7
|
307 |
-
emotion2, # 8
|
308 |
-
emotion3, # 9
|
309 |
-
emotion4, # 10
|
310 |
-
emotion5, # 11
|
311 |
-
emotion6, # 12
|
312 |
-
emotion7, # 13
|
313 |
-
emotion8, # 14
|
314 |
-
skip_vqscore_8, # 15
|
315 |
-
vq_single_slider, # 16
|
316 |
-
fmax_slider, # 17
|
317 |
-
skip_fmax, # 18
|
318 |
-
pitch_std_slider, # 19
|
319 |
-
skip_pitch_std, # 20
|
320 |
-
speaking_rate_slider, # 21
|
321 |
-
skip_speaking_rate, # 22
|
322 |
-
dnsmos_slider, # 23
|
323 |
-
skip_dnsmos_ovrl, # 24
|
324 |
-
speaker_noised_checkbox, # 25
|
325 |
-
skip_speaker_noised, # 26
|
326 |
-
],
|
327 |
-
)
|
328 |
-
|
329 |
-
# On page load, trigger the same UI refresh
|
330 |
-
demo.load(
|
331 |
-
fn=update_ui,
|
332 |
-
inputs=[model_choice],
|
333 |
-
outputs=[
|
334 |
-
text,
|
335 |
-
language,
|
336 |
-
speaker_audio,
|
337 |
-
prefix_audio,
|
338 |
-
skip_speaker,
|
339 |
-
skip_emotion,
|
340 |
-
emotion1,
|
341 |
-
emotion2,
|
342 |
-
emotion3,
|
343 |
-
emotion4,
|
344 |
-
emotion5,
|
345 |
-
emotion6,
|
346 |
-
emotion7,
|
347 |
-
emotion8,
|
348 |
-
skip_vqscore_8,
|
349 |
-
vq_single_slider,
|
350 |
-
fmax_slider,
|
351 |
-
skip_fmax,
|
352 |
-
pitch_std_slider,
|
353 |
-
skip_pitch_std,
|
354 |
-
speaking_rate_slider,
|
355 |
-
skip_speaking_rate,
|
356 |
-
dnsmos_slider,
|
357 |
-
skip_dnsmos_ovrl,
|
358 |
-
speaker_noised_checkbox,
|
359 |
-
skip_speaker_noised,
|
360 |
-
],
|
361 |
-
)
|
362 |
-
|
363 |
-
# Generate audio on button click
|
364 |
-
generate_button.click(
|
365 |
-
fn=generate_audio,
|
366 |
-
inputs=[
|
367 |
-
model_choice,
|
368 |
-
text,
|
369 |
-
language,
|
370 |
-
speaker_audio,
|
371 |
-
prefix_audio,
|
372 |
-
skip_speaker,
|
373 |
-
skip_emotion,
|
374 |
-
emotion1,
|
375 |
-
emotion2,
|
376 |
-
emotion3,
|
377 |
-
emotion4,
|
378 |
-
emotion5,
|
379 |
-
emotion6,
|
380 |
-
emotion7,
|
381 |
-
emotion8,
|
382 |
-
skip_vqscore_8,
|
383 |
-
vq_single_slider,
|
384 |
-
fmax_slider,
|
385 |
-
skip_fmax,
|
386 |
-
pitch_std_slider,
|
387 |
-
skip_pitch_std,
|
388 |
-
speaking_rate_slider,
|
389 |
-
skip_speaking_rate,
|
390 |
-
dnsmos_slider,
|
391 |
-
skip_dnsmos_ovrl,
|
392 |
-
speaker_noised_checkbox,
|
393 |
-
skip_speaker_noised,
|
394 |
-
cfg_scale_slider,
|
395 |
-
min_p_slider,
|
396 |
-
seed_number,
|
397 |
-
],
|
398 |
-
outputs=[output_audio],
|
399 |
-
)
|
400 |
-
|
401 |
-
return demo
|
402 |
-
|
403 |
|
404 |
if __name__ == "__main__":
|
405 |
-
demo
|
406 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
from zonos.model import Zonos
|
6 |
+
from zonos.conditioning import make_cond_dict
|
7 |
|
8 |
+
# Load the hybrid model
|
9 |
+
model = Zonos.from_pretrained("Zyphra/Zonos-v0.1-hybrid", device="cuda")
|
10 |
+
model.bfloat16() # Switch model weights to bfloat16 precision (optional, but recommended for GPU)
|
11 |
|
12 |
+
# Main inference function for Gradio
|
13 |
+
def tts(text, reference_audio):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"""
|
15 |
+
text: str
|
16 |
+
reference_audio: (numpy.ndarray, int) -> (data, sample_rate)
|
17 |
"""
|
18 |
+
if reference_audio is None:
|
19 |
+
return "No reference audio provided."
|
20 |
+
|
21 |
+
# reference_audio[0] is a NumPy float32 array of shape (num_samples, 1) or (num_samples,)
|
22 |
+
# reference_audio[1] is the sample rate
|
23 |
+
wav_np, sr = reference_audio
|
24 |
+
|
25 |
+
# Convert NumPy audio to Torch tensor
|
26 |
+
wav_torch = torch.from_numpy(wav_np).float().unsqueeze(0) # shape: (1, num_samples)
|
27 |
+
if wav_torch.dim() == 2 and wav_torch.shape[0] > wav_torch.shape[1]:
|
28 |
+
# If the shape is (samples, 1), reorder to (1, samples)
|
29 |
+
wav_torch = wav_torch.T
|
30 |
+
|
31 |
+
# Create speaker embedding
|
32 |
+
spk_embedding = model.embed_spk_audio(wav_torch, sr)
|
33 |
+
|
34 |
+
# Prepare conditioning
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
cond_dict = make_cond_dict(
|
36 |
text=text,
|
37 |
+
speaker=spk_embedding.to(torch.bfloat16),
|
38 |
+
language="en-us",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
+
conditioning = model.prepare_conditioning(cond_dict)
|
41 |
+
|
42 |
+
# Generate codes
|
43 |
+
with torch.no_grad():
|
44 |
+
torch.manual_seed(421) # Seeding for reproducible results
|
45 |
+
codes = model.generate(conditioning)
|
46 |
+
|
47 |
+
# Decode the codes into waveform
|
48 |
+
wavs = model.autoencoder.decode(codes).cpu()
|
49 |
+
out_audio = wavs[0].numpy() # shape: (num_samples,)
|
50 |
+
|
51 |
+
# Return as (sample_rate, audio_ndarray) for Gradio's "audio" output
|
52 |
+
return (model.autoencoder.sampling_rate, out_audio)
|
53 |
+
|
54 |
+
|
55 |
+
# Define the Gradio interface
|
56 |
+
# - text input for the prompt
|
57 |
+
# - audio input for the speaker reference
|
58 |
+
# - audio output with the generated speech
|
59 |
+
demo = gr.Interface(
|
60 |
+
fn=tts,
|
61 |
+
inputs=[
|
62 |
+
gr.Textbox(label="Text to Synthesize"),
|
63 |
+
gr.Audio(source="upload", type="numpy", label="Reference Audio (for speaker embedding)"),
|
64 |
+
],
|
65 |
+
outputs=gr.Audio(label="Generated Audio"),
|
66 |
+
title="Zonos TTS Demo (Hybrid)",
|
67 |
+
description=(
|
68 |
+
"Provide a reference audio snippet for speaker embedding, "
|
69 |
+
"enter text, and generate speech with Zonos TTS."
|
70 |
+
),
|
71 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
+
demo.launch(debug=True)
|
|