Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,139 +1,372 @@
|
|
1 |
import torch
|
2 |
import torchaudio
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
|
6 |
from zonos.model import Zonos
|
7 |
from zonos.conditioning import make_cond_dict, supported_language_codes
|
8 |
|
9 |
-
# We'll keep a global dictionary of loaded models to avoid reloading
|
10 |
-
MODELS_CACHE = {}
|
11 |
device = "cuda"
|
|
|
|
|
12 |
|
13 |
-
banner_url = "https://huggingface.co/datasets/Steveeeeeeen/random_images/resolve/main/ZonosHeader.png"
|
14 |
-
BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 150px; max-width: 300px;"> </div>'
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"""
|
20 |
-
|
21 |
-
if
|
22 |
-
print(f"Loading model: {model_name}")
|
23 |
-
model = Zonos.from_pretrained(model_name, device=device)
|
24 |
-
model = model.requires_grad_(False).eval()
|
25 |
-
model.bfloat16() # optional if GPU supports bfloat16
|
26 |
-
MODELS_CACHE[model_name] = model
|
27 |
-
print(f"Model loaded successfully: {model_name}")
|
28 |
-
return MODELS_CACHE[model_name]
|
29 |
-
|
30 |
-
@spaces.GPU(duration=90)
|
31 |
-
def tts(text, speaker_audio, selected_language, model_choice):
|
32 |
"""
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
model_choice: str (which Zonos model to use, e.g., "Zyphra/Zonos-v0.1-hybrid")
|
37 |
|
38 |
-
|
39 |
-
""
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
# If the user did not provide a reference audio, skip
|
46 |
-
if speaker_audio is None:
|
47 |
-
return None
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
# Prepare conditioning dictionary
|
69 |
cond_dict = make_cond_dict(
|
70 |
text=text,
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
device=device,
|
|
|
74 |
)
|
75 |
-
conditioning =
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
def build_demo():
|
88 |
-
with gr.Blocks(theme='davehornik/Tealy') as demo:
|
89 |
-
gr.HTML(BANNER, elem_id="banner")
|
90 |
-
gr.Markdown("## Zonos-v0.1 TTS Demo")
|
91 |
-
gr.Markdown(
|
92 |
-
"""
|
93 |
-
> **Zero-shot TTS with Voice Cloning**: Input text and a 10–30 second speaker sample to generate high-quality text-to-speech output.
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
> **Multilingual Support**: Supports English, Japanese, Chinese, French, and German.
|
98 |
-
"""
|
99 |
-
)
|
100 |
with gr.Row():
|
101 |
-
|
102 |
-
|
103 |
-
value=
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
)
|
125 |
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
|
|
129 |
generate_button.click(
|
130 |
-
fn=
|
131 |
-
inputs=[
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
)
|
134 |
|
135 |
return demo
|
136 |
|
|
|
137 |
if __name__ == "__main__":
|
138 |
-
|
139 |
-
|
|
|
|
1 |
import torch
|
2 |
import torchaudio
|
3 |
import gradio as gr
|
4 |
+
from os import getenv
|
5 |
|
6 |
from zonos.model import Zonos
|
7 |
from zonos.conditioning import make_cond_dict, supported_language_codes
|
8 |
|
|
|
|
|
9 |
device = "cuda"
|
10 |
+
CURRENT_MODEL_TYPE = None
|
11 |
+
CURRENT_MODEL = None
|
12 |
|
|
|
|
|
13 |
|
14 |
+
def load_model_if_needed(model_choice: str):
|
15 |
+
global CURRENT_MODEL_TYPE, CURRENT_MODEL
|
16 |
+
if CURRENT_MODEL_TYPE != model_choice:
|
17 |
+
if CURRENT_MODEL is not None:
|
18 |
+
del CURRENT_MODEL
|
19 |
+
torch.cuda.empty_cache()
|
20 |
+
print(f"Loading {model_choice} model...")
|
21 |
+
CURRENT_MODEL = Zonos.from_pretrained(model_choice, device=device)
|
22 |
+
CURRENT_MODEL.requires_grad_(False).eval()
|
23 |
+
CURRENT_MODEL_TYPE = model_choice
|
24 |
+
print(f"{model_choice} model loaded successfully!")
|
25 |
+
return CURRENT_MODEL
|
26 |
+
|
27 |
+
|
28 |
+
def update_ui(model_choice):
|
29 |
"""
|
30 |
+
Dynamically show/hide UI elements based on the model's conditioners.
|
31 |
+
We do NOT display 'language_id' or 'ctc_loss' even if they exist in the model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
"""
|
33 |
+
model = load_model_if_needed(model_choice)
|
34 |
+
cond_names = [c.name for c in model.prefix_conditioner.conditioners]
|
35 |
+
print("Conditioners in this model:", cond_names)
|
|
|
36 |
|
37 |
+
text_update = gr.update(visible=("espeak" in cond_names))
|
38 |
+
language_update = gr.update(visible=("espeak" in cond_names))
|
39 |
+
speaker_audio_update = gr.update(visible=("speaker" in cond_names))
|
40 |
+
prefix_audio_update = gr.update(visible=True)
|
41 |
+
emotion1_update = gr.update(visible=("emotion" in cond_names))
|
42 |
+
emotion2_update = gr.update(visible=("emotion" in cond_names))
|
43 |
+
emotion3_update = gr.update(visible=("emotion" in cond_names))
|
44 |
+
emotion4_update = gr.update(visible=("emotion" in cond_names))
|
45 |
+
emotion5_update = gr.update(visible=("emotion" in cond_names))
|
46 |
+
emotion6_update = gr.update(visible=("emotion" in cond_names))
|
47 |
+
emotion7_update = gr.update(visible=("emotion" in cond_names))
|
48 |
+
emotion8_update = gr.update(visible=("emotion" in cond_names))
|
49 |
+
vq_single_slider_update = gr.update(visible=("vqscore_8" in cond_names))
|
50 |
+
fmax_slider_update = gr.update(visible=("fmax" in cond_names))
|
51 |
+
pitch_std_slider_update = gr.update(visible=("pitch_std" in cond_names))
|
52 |
+
speaking_rate_slider_update = gr.update(visible=("speaking_rate" in cond_names))
|
53 |
+
dnsmos_slider_update = gr.update(visible=("dnsmos_ovrl" in cond_names))
|
54 |
+
speaker_noised_checkbox_update = gr.update(visible=("speaker_noised" in cond_names))
|
55 |
+
unconditional_keys_update = gr.update(
|
56 |
+
choices=[name for name in cond_names if name not in ("espeak", "language_id")]
|
57 |
+
)
|
58 |
|
59 |
+
return (
|
60 |
+
text_update,
|
61 |
+
language_update,
|
62 |
+
speaker_audio_update,
|
63 |
+
prefix_audio_update,
|
64 |
+
emotion1_update,
|
65 |
+
emotion2_update,
|
66 |
+
emotion3_update,
|
67 |
+
emotion4_update,
|
68 |
+
emotion5_update,
|
69 |
+
emotion6_update,
|
70 |
+
emotion7_update,
|
71 |
+
emotion8_update,
|
72 |
+
vq_single_slider_update,
|
73 |
+
fmax_slider_update,
|
74 |
+
pitch_std_slider_update,
|
75 |
+
speaking_rate_slider_update,
|
76 |
+
dnsmos_slider_update,
|
77 |
+
speaker_noised_checkbox_update,
|
78 |
+
unconditional_keys_update,
|
79 |
+
)
|
80 |
|
|
|
|
|
|
|
81 |
|
82 |
+
def generate_audio(
|
83 |
+
model_choice,
|
84 |
+
text,
|
85 |
+
language,
|
86 |
+
speaker_audio,
|
87 |
+
prefix_audio,
|
88 |
+
e1,
|
89 |
+
e2,
|
90 |
+
e3,
|
91 |
+
e4,
|
92 |
+
e5,
|
93 |
+
e6,
|
94 |
+
e7,
|
95 |
+
e8,
|
96 |
+
vq_single,
|
97 |
+
fmax,
|
98 |
+
pitch_std,
|
99 |
+
speaking_rate,
|
100 |
+
dnsmos_ovrl,
|
101 |
+
speaker_noised,
|
102 |
+
cfg_scale,
|
103 |
+
min_p,
|
104 |
+
seed,
|
105 |
+
randomize_seed,
|
106 |
+
unconditional_keys,
|
107 |
+
progress=gr.Progress(),
|
108 |
+
):
|
109 |
+
"""
|
110 |
+
Generates audio based on the provided UI parameters.
|
111 |
+
We do NOT use language_id or ctc_loss even if the model has them.
|
112 |
+
"""
|
113 |
+
selected_model = load_model_if_needed(model_choice)
|
114 |
+
|
115 |
+
speaker_noised_bool = bool(speaker_noised)
|
116 |
+
fmax = float(fmax)
|
117 |
+
pitch_std = float(pitch_std)
|
118 |
+
speaking_rate = float(speaking_rate)
|
119 |
+
dnsmos_ovrl = float(dnsmos_ovrl)
|
120 |
+
cfg_scale = float(cfg_scale)
|
121 |
+
min_p = float(min_p)
|
122 |
+
seed = int(seed)
|
123 |
+
max_new_tokens = 86 * 30
|
124 |
|
125 |
+
if randomize_seed:
|
126 |
+
seed = torch.randint(0, 2**32 - 1, (1,)).item()
|
127 |
+
torch.manual_seed(seed)
|
128 |
|
129 |
+
speaker_embedding = None
|
130 |
+
if speaker_audio is not None and "speaker" not in unconditional_keys:
|
131 |
+
wav, sr = torchaudio.load(speaker_audio)
|
132 |
+
speaker_embedding = selected_model.make_speaker_embedding(wav, sr)
|
133 |
+
speaker_embedding = speaker_embedding.to(device, dtype=torch.bfloat16)
|
134 |
|
135 |
+
audio_prefix_codes = None
|
136 |
+
if prefix_audio is not None:
|
137 |
+
wav_prefix, sr_prefix = torchaudio.load(prefix_audio)
|
138 |
+
wav_prefix = wav_prefix.mean(0, keepdim=True)
|
139 |
+
wav_prefix = torchaudio.functional.resample(wav_prefix, sr_prefix, selected_model.autoencoder.sampling_rate)
|
140 |
+
wav_prefix = wav_prefix.to(device, dtype=torch.float32)
|
141 |
+
with torch.autocast(device, dtype=torch.float32):
|
142 |
+
audio_prefix_codes = selected_model.autoencoder.encode(wav_prefix.unsqueeze(0))
|
143 |
|
144 |
+
emotion_tensor = torch.tensor(list(map(float, [e1, e2, e3, e4, e5, e6, e7, e8])), device=device)
|
145 |
+
|
146 |
+
vq_val = float(vq_single)
|
147 |
+
vq_tensor = torch.tensor([vq_val] * 8, device=device).unsqueeze(0)
|
148 |
|
|
|
149 |
cond_dict = make_cond_dict(
|
150 |
text=text,
|
151 |
+
language=language,
|
152 |
+
speaker=speaker_embedding,
|
153 |
+
emotion=emotion_tensor,
|
154 |
+
vqscore_8=vq_tensor,
|
155 |
+
fmax=fmax,
|
156 |
+
pitch_std=pitch_std,
|
157 |
+
speaking_rate=speaking_rate,
|
158 |
+
dnsmos_ovrl=dnsmos_ovrl,
|
159 |
+
speaker_noised=speaker_noised_bool,
|
160 |
device=device,
|
161 |
+
unconditional_keys=unconditional_keys,
|
162 |
)
|
163 |
+
conditioning = selected_model.prepare_conditioning(cond_dict)
|
164 |
+
|
165 |
+
estimated_generation_duration = 30 * len(text) / 400
|
166 |
+
estimated_total_steps = int(estimated_generation_duration * 86)
|
167 |
|
168 |
+
def update_progress(_frame: torch.Tensor, step: int, _total_steps: int) -> bool:
|
169 |
+
progress((step, estimated_total_steps))
|
170 |
+
return True
|
171 |
|
172 |
+
codes = selected_model.generate(
|
173 |
+
prefix_conditioning=conditioning,
|
174 |
+
audio_prefix_codes=audio_prefix_codes,
|
175 |
+
max_new_tokens=max_new_tokens,
|
176 |
+
cfg_scale=cfg_scale,
|
177 |
+
batch_size=1,
|
178 |
+
sampling_params=dict(min_p=min_p),
|
179 |
+
callback=update_progress,
|
180 |
+
)
|
181 |
|
182 |
+
wav_out = selected_model.autoencoder.decode(codes).cpu().detach()
|
183 |
+
sr_out = selected_model.autoencoder.sampling_rate
|
184 |
+
if wav_out.dim() == 2 and wav_out.size(0) > 1:
|
185 |
+
wav_out = wav_out[0:1, :]
|
186 |
+
return (sr_out, wav_out.squeeze().numpy()), seed
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
+
def build_interface():
|
190 |
+
with gr.Blocks() as demo:
|
191 |
+
with gr.Row():
|
192 |
+
with gr.Column():
|
193 |
+
model_choice = gr.Dropdown(
|
194 |
+
choices=["Zyphra/Zonos-v0.1-transformer", "Zyphra/Zonos-v0.1-hybrid"],
|
195 |
+
value="Zyphra/Zonos-v0.1-transformer",
|
196 |
+
label="Zonos Model Type",
|
197 |
+
info="Select the model variant to use.",
|
198 |
+
)
|
199 |
+
text = gr.Textbox(
|
200 |
+
label="Text to Synthesize",
|
201 |
+
value="Zonos uses eSpeak for text to phoneme conversion!",
|
202 |
+
lines=4,
|
203 |
+
max_length=500, # approximately
|
204 |
+
)
|
205 |
+
language = gr.Dropdown(
|
206 |
+
choices=supported_language_codes,
|
207 |
+
value="en-us",
|
208 |
+
label="Language Code",
|
209 |
+
info="Select a language code.",
|
210 |
+
)
|
211 |
+
prefix_audio = gr.Audio(
|
212 |
+
value="assets/silence_100ms.wav",
|
213 |
+
label="Optional Prefix Audio (continue from this audio)",
|
214 |
+
type="filepath",
|
215 |
+
)
|
216 |
+
with gr.Column():
|
217 |
+
speaker_audio = gr.Audio(
|
218 |
+
label="Optional Speaker Audio (for cloning)",
|
219 |
+
type="filepath",
|
220 |
+
)
|
221 |
+
speaker_noised_checkbox = gr.Checkbox(label="Denoise Speaker?", value=False)
|
222 |
|
|
|
|
|
|
|
223 |
with gr.Row():
|
224 |
+
with gr.Column():
|
225 |
+
gr.Markdown("## Conditioning Parameters")
|
226 |
+
dnsmos_slider = gr.Slider(1.0, 5.0, value=4.0, step=0.1, label="DNSMOS Overall")
|
227 |
+
fmax_slider = gr.Slider(0, 24000, value=24000, step=1, label="Fmax (Hz)")
|
228 |
+
vq_single_slider = gr.Slider(0.5, 0.8, 0.78, 0.01, label="VQ Score")
|
229 |
+
pitch_std_slider = gr.Slider(0.0, 300.0, value=45.0, step=1, label="Pitch Std")
|
230 |
+
speaking_rate_slider = gr.Slider(5.0, 30.0, value=15.0, step=0.5, label="Speaking Rate")
|
231 |
+
|
232 |
+
with gr.Column():
|
233 |
+
gr.Markdown("## Generation Parameters")
|
234 |
+
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="CFG Scale")
|
235 |
+
min_p_slider = gr.Slider(0.0, 1.0, 0.15, 0.01, label="Min P")
|
236 |
+
seed_number = gr.Number(label="Seed", value=420, precision=0)
|
237 |
+
randomize_seed_toggle = gr.Checkbox(label="Randomize Seed (before generation)", value=True)
|
238 |
+
|
239 |
+
with gr.Accordion("Advanced Parameters", open=False):
|
240 |
+
gr.Markdown(
|
241 |
+
"### Unconditional Toggles\n"
|
242 |
+
"Checking a box will make the model ignore the corresponding conditioning value and make it unconditional.\n"
|
243 |
+
'Practically this means the given conditioning feature will be unconstrained and "filled in automatically".'
|
244 |
)
|
245 |
+
with gr.Row():
|
246 |
+
unconditional_keys = gr.CheckboxGroup(
|
247 |
+
[
|
248 |
+
"speaker",
|
249 |
+
"emotion",
|
250 |
+
"vqscore_8",
|
251 |
+
"fmax",
|
252 |
+
"pitch_std",
|
253 |
+
"speaking_rate",
|
254 |
+
"dnsmos_ovrl",
|
255 |
+
"speaker_noised",
|
256 |
+
],
|
257 |
+
value=["emotion"],
|
258 |
+
label="Unconditional Keys",
|
259 |
+
)
|
260 |
+
|
261 |
+
gr.Markdown(
|
262 |
+
"### Emotion Sliders\n"
|
263 |
+
"Warning: The way these sliders work is not intuitive and may require some trial and error to get the desired effect.\n"
|
264 |
+
"Certain configurations can cause the model to become unstable. Setting emotion to unconditional may help."
|
265 |
)
|
266 |
+
with gr.Row():
|
267 |
+
emotion1 = gr.Slider(0.0, 1.0, 1.0, 0.05, label="Happiness")
|
268 |
+
emotion2 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Sadness")
|
269 |
+
emotion3 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Disgust")
|
270 |
+
emotion4 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Fear")
|
271 |
+
with gr.Row():
|
272 |
+
emotion5 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Surprise")
|
273 |
+
emotion6 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Anger")
|
274 |
+
emotion7 = gr.Slider(0.0, 1.0, 0.1, 0.05, label="Other")
|
275 |
+
emotion8 = gr.Slider(0.0, 1.0, 0.2, 0.05, label="Neutral")
|
276 |
|
277 |
+
with gr.Column():
|
278 |
+
generate_button = gr.Button("Generate Audio")
|
279 |
+
output_audio = gr.Audio(label="Generated Audio", type="numpy", autoplay=True)
|
280 |
+
|
281 |
+
model_choice.change(
|
282 |
+
fn=update_ui,
|
283 |
+
inputs=[model_choice],
|
284 |
+
outputs=[
|
285 |
+
text,
|
286 |
+
language,
|
287 |
+
speaker_audio,
|
288 |
+
prefix_audio,
|
289 |
+
emotion1,
|
290 |
+
emotion2,
|
291 |
+
emotion3,
|
292 |
+
emotion4,
|
293 |
+
emotion5,
|
294 |
+
emotion6,
|
295 |
+
emotion7,
|
296 |
+
emotion8,
|
297 |
+
vq_single_slider,
|
298 |
+
fmax_slider,
|
299 |
+
pitch_std_slider,
|
300 |
+
speaking_rate_slider,
|
301 |
+
dnsmos_slider,
|
302 |
+
speaker_noised_checkbox,
|
303 |
+
unconditional_keys,
|
304 |
+
],
|
305 |
)
|
306 |
|
307 |
+
# On page load, trigger the same UI refresh
|
308 |
+
demo.load(
|
309 |
+
fn=update_ui,
|
310 |
+
inputs=[model_choice],
|
311 |
+
outputs=[
|
312 |
+
text,
|
313 |
+
language,
|
314 |
+
speaker_audio,
|
315 |
+
prefix_audio,
|
316 |
+
emotion1,
|
317 |
+
emotion2,
|
318 |
+
emotion3,
|
319 |
+
emotion4,
|
320 |
+
emotion5,
|
321 |
+
emotion6,
|
322 |
+
emotion7,
|
323 |
+
emotion8,
|
324 |
+
vq_single_slider,
|
325 |
+
fmax_slider,
|
326 |
+
pitch_std_slider,
|
327 |
+
speaking_rate_slider,
|
328 |
+
dnsmos_slider,
|
329 |
+
speaker_noised_checkbox,
|
330 |
+
unconditional_keys,
|
331 |
+
],
|
332 |
+
)
|
333 |
|
334 |
+
# Generate audio on button click
|
335 |
generate_button.click(
|
336 |
+
fn=generate_audio,
|
337 |
+
inputs=[
|
338 |
+
model_choice,
|
339 |
+
text,
|
340 |
+
language,
|
341 |
+
speaker_audio,
|
342 |
+
prefix_audio,
|
343 |
+
emotion1,
|
344 |
+
emotion2,
|
345 |
+
emotion3,
|
346 |
+
emotion4,
|
347 |
+
emotion5,
|
348 |
+
emotion6,
|
349 |
+
emotion7,
|
350 |
+
emotion8,
|
351 |
+
vq_single_slider,
|
352 |
+
fmax_slider,
|
353 |
+
pitch_std_slider,
|
354 |
+
speaking_rate_slider,
|
355 |
+
dnsmos_slider,
|
356 |
+
speaker_noised_checkbox,
|
357 |
+
cfg_scale_slider,
|
358 |
+
min_p_slider,
|
359 |
+
seed_number,
|
360 |
+
randomize_seed_toggle,
|
361 |
+
unconditional_keys,
|
362 |
+
],
|
363 |
+
outputs=[output_audio, seed_number],
|
364 |
)
|
365 |
|
366 |
return demo
|
367 |
|
368 |
+
|
369 |
if __name__ == "__main__":
|
370 |
+
demo = build_interface()
|
371 |
+
share = getenv("GRADIO_SHARE", "False").lower() in ("true", "1", "t")
|
372 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=share)
|