Spaces:
Running
on
Zero
Running
on
Zero
import json | |
from typing import Callable | |
import safetensors | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
from mamba_ssm.utils.generation import InferenceParams | |
from tqdm import tqdm | |
from zonos.autoencoder import DACAutoencoder | |
from zonos.backbone import ZonosBackbone | |
from zonos.codebook_pattern import apply_delay_pattern, revert_delay_pattern | |
from zonos.conditioning import PrefixConditioner | |
from zonos.config import ZonosConfig | |
from zonos.sampling import sample_from_logits | |
from zonos.speaker_cloning import SpeakerEmbeddingLDA | |
class Zonos(nn.Module): | |
def __init__(self, config: ZonosConfig): | |
super().__init__() | |
self.config = config | |
dim = config.backbone.d_model | |
self.eos_token_id = config.eos_token_id | |
self.masked_token_id = config.masked_token_id | |
self.autoencoder = DACAutoencoder() | |
self.backbone = ZonosBackbone(config.backbone) | |
self.prefix_conditioner = PrefixConditioner(config.prefix_conditioner, dim) | |
self.spk_clone_model = None | |
# TODO: pad to multiple of at least 8 | |
self.embeddings = nn.ModuleList([nn.Embedding(1026, dim) for _ in range(self.autoencoder.num_codebooks)]) | |
self.heads = nn.ModuleList([nn.Linear(dim, 1025, bias=False) for _ in range(self.autoencoder.num_codebooks)]) | |
self._cg_graph = None | |
self._cg_batch_size = None | |
self._cg_input_ids = None | |
self._cg_logits = None | |
self._cg_inference_params = None | |
self._cg_scale = None | |
def from_pretrained(cls, repo_id: str, revision: str | None = None, device: str = "cuda") -> "Zonos": | |
config_path = hf_hub_download(repo_id=repo_id, filename="config.json", revision=revision) | |
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors", revision=revision) | |
return cls.from_local(config_path, model_path, device) | |
def from_local(cls, config_path: str, model_path: str, device: str = "cuda") -> "Zonos": | |
config = ZonosConfig.from_dict(json.load(open(config_path))) | |
model = cls(config).to(device, torch.bfloat16) | |
model.autoencoder.dac.to(device) | |
sd = model.state_dict() | |
with safetensors.safe_open(model_path, framework="pt") as f: | |
for k in f.keys(): | |
sd[k] = f.get_tensor(k) | |
model.load_state_dict(sd) | |
return model | |
def make_speaker_embedding(self, wav: torch.Tensor, sr: int) -> torch.Tensor: | |
"""Generate a speaker embedding from an audio clip.""" | |
if self.spk_clone_model is None: | |
self.spk_clone_model = SpeakerEmbeddingLDA() | |
_, spk_embedding = self.spk_clone_model(wav.to(self.spk_clone_model.device), sr) | |
return spk_embedding.unsqueeze(0).bfloat16() | |
def embed_codes(self, codes: torch.Tensor) -> torch.Tensor: | |
return sum(emb(codes[:, i]) for i, emb in enumerate(self.embeddings)) | |
def apply_heads(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return torch.stack([head(hidden_states) for head in self.heads], dim=1) | |
def _compute_logits( | |
self, hidden_states: torch.Tensor, inference_params: InferenceParams, cfg_scale: float | |
) -> torch.Tensor: | |
""" | |
Pass `hidden_states` into `backbone` and `multi_head`, applying | |
classifier-free guidance if `cfg_scale != 1.0`. | |
""" | |
last_hidden_states = self.backbone(hidden_states, inference_params)[:, -1, :].unsqueeze(1) | |
logits = self.apply_heads(last_hidden_states).squeeze(2).float() | |
if cfg_scale != 1.0: | |
cond_logits, uncond_logits = logits.chunk(2) | |
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale | |
return logits | |
def _decode_one_token( | |
self, | |
input_ids: torch.Tensor, | |
inference_params: InferenceParams, | |
cfg_scale: float, | |
) -> torch.Tensor: | |
""" | |
Single-step decode. Prepares the hidden states, possibly replicates them | |
for CFG, and then delegates to `_compute_logits`. | |
Below we wrap this function with a simple CUDA Graph capturing mechanism, | |
doing 3 warmup steps if needed and then capturing or replaying the graph. | |
We only recapture if the batch size changes. | |
""" | |
# TODO: support cfg_scale==1 | |
if cfg_scale == 1.0: | |
hidden_states = self.embed_codes(input_ids) | |
return self._compute_logits(hidden_states, inference_params, cfg_scale) | |
bsz = input_ids.size(0) | |
need_capture = (self._cg_graph is None) or (self._cg_batch_size != bsz) | |
if need_capture: | |
self._cg_graph = None | |
self._cg_batch_size = bsz | |
self._cg_inference_params = inference_params | |
self._cg_scale = cfg_scale | |
for _ in range(3): | |
hidden_states = self.embed_codes(input_ids) | |
hidden_states = hidden_states.repeat(2, 1, 1) # because cfg != 1.0 | |
logits = self._compute_logits(hidden_states, inference_params, cfg_scale) | |
self._cg_input_ids = input_ids.clone() | |
self._cg_logits = torch.empty_like(logits) | |
g = torch.cuda.CUDAGraph() | |
def capture_region(): | |
hidden_states_local = self.embed_codes(self._cg_input_ids) | |
hidden_states_local = hidden_states_local.repeat(2, 1, 1) | |
self._cg_logits = self._compute_logits(hidden_states_local, self._cg_inference_params, self._cg_scale) | |
with torch.cuda.graph(g): | |
capture_region() | |
self._cg_graph = g | |
else: | |
self._cg_input_ids.copy_(input_ids) | |
self._cg_graph.replay() | |
return self._cg_logits | |
def _prefill( | |
self, | |
prefix_hidden_states: torch.Tensor, | |
input_ids: torch.Tensor, | |
inference_params: InferenceParams, | |
cfg_scale: float, | |
) -> torch.Tensor: | |
""" | |
"Prefill" mode: we already have `prefix_hidden_states`, and we want | |
to append new embeddings, then compute the logits. | |
""" | |
# Replicate input_ids if CFG is enabled | |
if cfg_scale != 1.0: | |
input_ids = input_ids.expand(prefix_hidden_states.shape[0], -1, -1) | |
hidden_states = torch.cat([prefix_hidden_states, self.embed_codes(input_ids)], dim=1) | |
return self._compute_logits(hidden_states, inference_params, cfg_scale) | |
def setup_cache(self, batch_size: int, max_seqlen: int, dtype: torch.dtype = torch.bfloat16) -> InferenceParams: | |
key_value_memory_dict = { | |
i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype) | |
for i, layer in enumerate(self.backbone.layers) | |
} | |
lengths_per_sample = torch.full((batch_size,), 0, dtype=torch.int32, device="cuda") | |
return InferenceParams(max_seqlen, batch_size, 0, 0, key_value_memory_dict, lengths_per_sample) | |
def prepare_conditioning(self, cond_dict: dict, uncond_dict: dict | None = None) -> torch.Tensor: | |
if uncond_dict is None: | |
uncond_dict = {k: cond_dict[k] for k in self.prefix_conditioner.required_keys} | |
return torch.cat( | |
[ | |
self.prefix_conditioner(cond_dict), | |
self.prefix_conditioner(uncond_dict), | |
] | |
) | |
def generate( | |
self, | |
prefix_conditioning: torch.Tensor, # [bsz, cond_seq_len, d_model] | |
audio_prefix_codes: torch.Tensor | None = None, # [bsz, 9, prefix_audio_seq_len] | |
max_new_tokens: int = 86 * 30, | |
cfg_scale: float = 2.0, | |
batch_size: int = 1, | |
sampling_params: dict = dict(min_p=0.1), | |
progress_bar: bool = True, | |
callback: Callable[[torch.Tensor, int, int], bool] | None = None, | |
): | |
assert cfg_scale != 1, "TODO: add support for cfg_scale=1" | |
prefix_audio_len = 0 if audio_prefix_codes is None else audio_prefix_codes.shape[2] | |
unknown_token = -1 | |
audio_seq_len = prefix_audio_len + max_new_tokens | |
seq_len = prefix_conditioning.shape[1] + audio_seq_len | |
inference_params = self.setup_cache(batch_size=batch_size * 2, max_seqlen=seq_len) | |
codes = torch.full((batch_size, 9, audio_seq_len), unknown_token, device="cuda") | |
if audio_prefix_codes is not None: | |
codes[..., :prefix_audio_len] = audio_prefix_codes | |
delayed_codes = apply_delay_pattern(codes, self.masked_token_id) | |
delayed_prefix_audio_codes = delayed_codes[..., : prefix_audio_len + 1] | |
logits = self._prefill(prefix_conditioning, delayed_prefix_audio_codes, inference_params, cfg_scale) | |
next_token = sample_from_logits(logits, **sampling_params) | |
offset = delayed_prefix_audio_codes.shape[2] | |
frame = delayed_codes[..., offset : offset + 1] | |
frame.masked_scatter_(frame == unknown_token, next_token) | |
prefix_length = prefix_conditioning.shape[1] + prefix_audio_len + 1 | |
inference_params.seqlen_offset += prefix_length | |
inference_params.lengths_per_sample[:] += prefix_length | |
logit_bias = torch.zeros_like(logits) | |
logit_bias[:, 1:, self.eos_token_id] = -torch.inf # only allow codebook 0 to predict EOS | |
stopping = torch.zeros(batch_size, dtype=torch.bool, device="cuda") | |
max_steps = delayed_codes.shape[2] - offset | |
remaining_steps = torch.full((batch_size,), max_steps, device="cuda") | |
progress = tqdm(total=max_steps, desc="Generating", disable=not progress_bar) | |
step = 0 | |
while torch.max(remaining_steps) > 0: | |
offset += 1 | |
input_ids = delayed_codes[..., offset - 1 : offset] | |
logits = self._decode_one_token(input_ids, inference_params, cfg_scale) | |
next_token = sample_from_logits(logits, generated_tokens=delayed_codes[..., :offset], **sampling_params) | |
eos_in_cb0 = next_token[:, 0] == self.eos_token_id | |
remaining_steps[eos_in_cb0[:, 0]] = torch.minimum(remaining_steps[eos_in_cb0[:, 0]], torch.tensor(9)) | |
stopping |= eos_in_cb0[:, 0] | |
eos_codebook_idx = 9 - remaining_steps | |
eos_codebook_idx = torch.clamp(eos_codebook_idx, max=9 - 1) | |
for i in range(next_token.shape[0]): | |
if stopping[i]: | |
idx = eos_codebook_idx[i].item() | |
next_token[i, :idx] = self.masked_token_id | |
next_token[i, idx] = self.eos_token_id | |
frame = delayed_codes[..., offset : offset + 1] | |
frame.masked_scatter_(frame == unknown_token, next_token) | |
inference_params.seqlen_offset += 1 | |
inference_params.lengths_per_sample[:] += 1 | |
remaining_steps -= 1 | |
progress.update() | |
step += 1 | |
if callback is not None and not callback(frame, step, max_steps): | |
break | |
out_codes = revert_delay_pattern(delayed_codes) | |
out_codes.masked_fill_(out_codes >= 1024, 0) | |
out_codes = out_codes[..., : offset - 9] | |
self._cg_graph = None # reset cuda graph to avoid cache changes | |
return out_codes | |