Spaces:
Running
on
Zero
Running
on
Zero
from functools import cache | |
from typing import Any, Literal, Iterable | |
import torch | |
import torch.nn as nn | |
from zonos.config import PrefixConditionerConfig | |
class Conditioner(nn.Module): | |
def __init__( | |
self, | |
output_dim: int, | |
name: str, | |
cond_dim: int | None = None, | |
projection: Literal["none", "linear", "mlp"] = "none", | |
uncond_type: Literal["learned", "none"] = "none", | |
**kwargs, | |
): | |
super().__init__() | |
self.name = name | |
self.output_dim = output_dim | |
self.cond_dim = cond_dim = cond_dim or output_dim | |
if projection == "linear": | |
self.project = nn.Linear(cond_dim, output_dim) | |
elif projection == "mlp": | |
self.project = nn.Sequential( | |
nn.Linear(cond_dim, output_dim), | |
nn.SiLU(), | |
nn.Linear(output_dim, output_dim), | |
) | |
else: | |
self.project = nn.Identity() | |
self.uncond_vector = None | |
if uncond_type == "learned": | |
self.uncond_vector = nn.Parameter(torch.zeros(output_dim)) | |
def apply_cond(self, *inputs: Any) -> torch.Tensor: | |
raise NotImplementedError() | |
def forward(self, inputs: tuple[Any, ...] | None) -> torch.Tensor: | |
if inputs is None: | |
assert self.uncond_vector is not None | |
return self.uncond_vector.data.view(1, 1, -1) | |
cond = self.apply_cond(*inputs) | |
cond = self.project(cond) | |
return cond | |
# ------- ESPEAK CONTAINMENT ZONE ------------------------------------------------------------------------------------------------------------------------------------------------ | |
import re | |
import unicodedata | |
import inflect | |
import torch | |
import torch.nn as nn | |
from kanjize import number2kanji | |
from phonemizer.backend import EspeakBackend | |
from sudachipy import Dictionary, SplitMode | |
# --- Number normalization code from https://github.com/daniilrobnikov/vits2/blob/main/text/normalize_numbers.py --- | |
_inflect = inflect.engine() | |
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])") | |
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)") | |
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)") | |
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)") | |
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)") | |
_number_re = re.compile(r"[0-9]+") | |
def _remove_commas(m: re.Match) -> str: | |
return m.group(1).replace(",", "") | |
def _expand_decimal_point(m: re.Match) -> str: | |
return m.group(1).replace(".", " point ") | |
def _expand_dollars(m: re.Match) -> str: | |
match = m.group(1) | |
parts = match.split(".") | |
if len(parts) > 2: | |
return match + " dollars" # Unexpected format | |
dollars = int(parts[0]) if parts[0] else 0 | |
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 | |
if dollars and cents: | |
dollar_unit = "dollar" if dollars == 1 else "dollars" | |
cent_unit = "cent" if cents == 1 else "cents" | |
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit) | |
elif dollars: | |
dollar_unit = "dollar" if dollars == 1 else "dollars" | |
return "%s %s" % (dollars, dollar_unit) | |
elif cents: | |
cent_unit = "cent" if cents == 1 else "cents" | |
return "%s %s" % (cents, cent_unit) | |
else: | |
return "zero dollars" | |
def _expand_ordinal(m: re.Match) -> str: | |
return _inflect.number_to_words(m.group(0)) | |
def _expand_number(m: re.Match) -> str: | |
num = int(m.group(0)) | |
if num > 1000 and num < 3000: | |
if num == 2000: | |
return "two thousand" | |
elif num > 2000 and num < 2010: | |
return "two thousand " + _inflect.number_to_words(num % 100) | |
elif num % 100 == 0: | |
return _inflect.number_to_words(num // 100) + " hundred" | |
else: | |
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ") | |
else: | |
return _inflect.number_to_words(num, andword="") | |
def normalize_numbers(text: str) -> str: | |
text = re.sub(_comma_number_re, _remove_commas, text) | |
text = re.sub(_pounds_re, r"\1 pounds", text) | |
text = re.sub(_dollars_re, _expand_dollars, text) | |
text = re.sub(_decimal_number_re, _expand_decimal_point, text) | |
text = re.sub(_ordinal_re, _expand_ordinal, text) | |
text = re.sub(_number_re, _expand_number, text) | |
return text | |
# --- Number normalization code end --- | |
PAD_ID, UNK_ID, BOS_ID, EOS_ID = 0, 1, 2, 3 | |
SPECIAL_TOKEN_IDS = [PAD_ID, UNK_ID, BOS_ID, EOS_ID] | |
_punctuation = ';:,.!?¡¿—…"«»“”() *~-/\\&' | |
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" | |
_letters_ipa = ( | |
"ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" | |
) | |
symbols = [*_punctuation, *_letters, *_letters_ipa] | |
_symbol_to_id = {s: i for i, s in enumerate(symbols, start=len(SPECIAL_TOKEN_IDS))} | |
def _get_symbol_id(s: str) -> int: | |
return _symbol_to_id.get(s, 1) | |
def get_symbol_ids(text: str) -> list[int]: | |
return list(map(_get_symbol_id, text)) | |
def tokenize_phonemes(phonemes: list[str]) -> tuple[torch.Tensor, list[int]]: | |
phoneme_ids = [[BOS_ID, *get_symbol_ids(phonemes), EOS_ID] for phonemes in phonemes] | |
lengths = list(map(len, phoneme_ids)) | |
longest = max(lengths) | |
phoneme_ids = [[PAD_ID] * (longest - len(ids)) + ids for ids in phoneme_ids] | |
return torch.tensor(phoneme_ids), lengths | |
def normalize_jp_text(text: str, tokenizer=Dictionary(dict="full").create()) -> str: | |
text = unicodedata.normalize("NFKC", text) | |
text = re.sub(r"\d+", lambda m: number2kanji(int(m[0])), text) | |
final_text = " ".join([x.reading_form() for x in tokenizer.tokenize(text, SplitMode.A)]) | |
return final_text | |
def clean(texts: list[str], languages: list[str]) -> list[str]: | |
texts_out = [] | |
for text, language in zip(texts, languages): | |
if "ja" in language: | |
text = normalize_jp_text(text) | |
else: | |
text = normalize_numbers(text) | |
texts_out.append(text) | |
return texts_out | |
def get_backend(language: str) -> "EspeakBackend": | |
import logging | |
from phonemizer.backend import EspeakBackend | |
logger = logging.getLogger("phonemizer") | |
backend = EspeakBackend( | |
language, | |
preserve_punctuation=True, | |
with_stress=True, | |
punctuation_marks=_punctuation, | |
logger=logger, | |
) | |
logger.setLevel(logging.ERROR) | |
return backend | |
def phonemize(texts: list[str], languages: list[str]) -> list[str]: | |
texts = clean(texts, languages) | |
batch_phonemes = [] | |
for text, language in zip(texts, languages): | |
backend = get_backend(language) | |
phonemes = backend.phonemize([text], strip=True) | |
batch_phonemes.append(phonemes[0]) | |
return batch_phonemes | |
class EspeakPhonemeConditioner(Conditioner): | |
def __init__(self, output_dim: int, **kwargs): | |
super().__init__(output_dim, **kwargs) | |
self.phoneme_embedder = nn.Embedding(len(SPECIAL_TOKEN_IDS) + len(symbols), output_dim) | |
def apply_cond(self, texts: list[str], languages: list[str]) -> torch.Tensor: | |
""" | |
Args: | |
texts: list of texts to convert to phonemes | |
languages: ISO 639-1 -or otherwise eSpeak compatible- language code | |
""" | |
device = self.phoneme_embedder.weight.device | |
phonemes = phonemize(texts, languages) | |
phoneme_ids, _ = tokenize_phonemes(phonemes) | |
phoneme_embeds = self.phoneme_embedder(phoneme_ids.to(device)) | |
return phoneme_embeds | |
# ------- ESPEAK CONTAINMENT ZONE ------------------------------------------------------------------------------------------------------------------------------------------------ | |
class FourierConditioner(Conditioner): | |
def __init__( | |
self, | |
output_dim: int, | |
input_dim: int = 1, | |
std: float = 1.0, | |
min_val: float = 0.0, | |
max_val: float = 1.0, | |
**kwargs, | |
): | |
assert output_dim % 2 == 0 | |
super().__init__(output_dim, **kwargs) | |
self.register_buffer("weight", torch.randn([output_dim // 2, input_dim]) * std) | |
self.input_dim, self.min_val, self.max_val = input_dim, min_val, max_val | |
def apply_cond(self, x: torch.Tensor) -> torch.Tensor: | |
assert x.shape[-1] == self.input_dim | |
x = (x - self.min_val) / (self.max_val - self.min_val) # [batch_size, seq_len, input_dim] | |
f = 2 * torch.pi * x.to(self.weight.dtype) @ self.weight.T # [batch_size, seq_len, output_dim // 2] | |
return torch.cat([f.cos(), f.sin()], dim=-1) # [batch_size, seq_len, output_dim] | |
class IntegerConditioner(Conditioner): | |
def __init__(self, output_dim: int, min_val: int = 0, max_val: int = 512, **kwargs): | |
super().__init__(output_dim, **kwargs) | |
self.min_val = min_val | |
self.max_val = max_val | |
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim) | |
def apply_cond(self, x: torch.Tensor) -> torch.Tensor: | |
assert x.shape[-1] == 1 | |
return self.int_embedder(x.squeeze(-1) - self.min_val) # [batch_size, seq_len, output_dim] | |
class PassthroughConditioner(Conditioner): | |
def __init__(self, output_dim: int, **kwargs): | |
super().__init__(output_dim, **kwargs) | |
def apply_cond(self, x: torch.Tensor) -> torch.Tensor: | |
assert x.shape[-1] == self.cond_dim | |
return x | |
_cond_cls_map = { | |
"PassthroughConditioner": PassthroughConditioner, | |
"EspeakPhonemeConditioner": EspeakPhonemeConditioner, | |
"FourierConditioner": FourierConditioner, | |
"IntegerConditioner": IntegerConditioner, | |
} | |
def build_conditioners(conditioners: list[dict], output_dim: int) -> list[Conditioner]: | |
return [_cond_cls_map[config["type"]](output_dim, **config) for config in conditioners] | |
class PrefixConditioner(Conditioner): | |
def __init__(self, config: PrefixConditionerConfig, output_dim: int): | |
super().__init__(output_dim, "prefix", projection=config.projection) | |
self.conditioners = nn.ModuleList(build_conditioners(config.conditioners, output_dim)) | |
self.norm = nn.LayerNorm(output_dim) | |
self.required_keys = {c.name for c in self.conditioners if c.uncond_vector is None} | |
def forward(self, cond_dict: dict) -> torch.Tensor: | |
if not set(cond_dict).issuperset(self.required_keys): | |
raise ValueError(f"Missing required keys: {self.required_keys - set(cond_dict)}") | |
conds = [] | |
for conditioner in self.conditioners: | |
conds.append(conditioner(cond_dict.get(conditioner.name))) | |
max_bsz = max(map(len, conds)) | |
assert all(c.shape[0] in (max_bsz, 1) for c in conds) | |
conds = [c.expand(max_bsz, -1, -1) for c in conds] | |
return self.norm(self.project(torch.cat(conds, dim=-2))) | |
supported_language_codes = [ | |
'af', 'am', 'an', 'ar', 'as', 'az', 'ba', 'bg', 'bn', 'bpy', 'bs', 'ca', 'cmn', | |
'cs', 'cy', 'da', 'de', 'el', 'en-029', 'en-gb', 'en-gb-scotland', 'en-gb-x-gbclan', | |
'en-gb-x-gbcwmd', 'en-gb-x-rp', 'en-us', 'eo', 'es', 'es-419', 'et', 'eu', 'fa', | |
'fa-latn', 'fi', 'fr-be', 'fr-ch', 'fr-fr', 'ga', 'gd', 'gn', 'grc', 'gu', 'hak', | |
'hi', 'hr', 'ht', 'hu', 'hy', 'hyw', 'ia', 'id', 'is', 'it', 'ja', 'jbo', 'ka', | |
'kk', 'kl', 'kn', 'ko', 'kok', 'ku', 'ky', 'la', 'lfn', 'lt', 'lv', 'mi', 'mk', | |
'ml', 'mr', 'ms', 'mt', 'my', 'nb', 'nci', 'ne', 'nl', 'om', 'or', 'pa', 'pap', | |
'pl', 'pt', 'pt-br', 'py', 'quc', 'ro', 'ru', 'ru-lv', 'sd', 'shn', 'si', 'sk', | |
'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'tn', 'tr', 'tt', 'ur', 'uz', 'vi', | |
'vi-vn-x-central', 'vi-vn-x-south', 'yue' | |
] # fmt: off | |
def make_cond_dict( | |
text: str = "It would be nice to have time for testing, indeed.", | |
language: str = "en-us", | |
speaker: torch.Tensor | None = None, | |
emotion: list[float] = [0.3077, 0.0256, 0.0256, 0.0256, 0.0256, 0.0256, 0.2564, 0.3077], | |
fmax: float = 22050.0, | |
pitch_std: float = 20.0, | |
speaking_rate: float = 15.0, | |
vqscore_8: list[float] = [0.78] * 8, | |
ctc_loss: float = 0.0, | |
dnsmos_ovrl: float = 4.0, | |
speaker_noised: bool = False, | |
unconditional_keys: Iterable[str] = {"vqscore_8", "dnsmos_ovrl"}, | |
device: str = "cuda", | |
) -> dict: | |
""" | |
A helper to build the 'cond_dict' that the model expects. | |
By default, it will generate a random speaker embedding | |
""" | |
assert language.lower() in supported_language_codes, "Please pick a supported language" | |
language_code_to_id = {lang: i for i, lang in enumerate(supported_language_codes)} | |
cond_dict = { | |
"espeak": ([text], [language]), | |
"speaker": speaker, | |
"emotion": emotion, | |
"fmax": fmax, | |
"pitch_std": pitch_std, | |
"speaking_rate": speaking_rate, | |
"language_id": language_code_to_id[language], | |
"vqscore_8": vqscore_8, | |
"ctc_loss": ctc_loss, | |
"dnsmos_ovrl": dnsmos_ovrl, | |
"speaker_noised": int(speaker_noised), | |
} | |
for k in unconditional_keys: | |
cond_dict.pop(k, None) | |
for k, v in cond_dict.items(): | |
if isinstance(v, (float, int, list)): | |
v = torch.tensor(v) | |
if isinstance(v, torch.Tensor): | |
cond_dict[k] = v.view(1, 1, -1).to(device) | |
if k == "emotion": | |
cond_dict[k] /= cond_dict[k].sum(dim=-1) | |
return cond_dict | |