Zonos / zonos /conditioning.py
Steveeeeeeen's picture
Steveeeeeeen HF staff
ZeroGPU (#2)
0af138e verified
from functools import cache
from typing import Any, Literal, Iterable
import torch
import torch.nn as nn
from zonos.config import PrefixConditionerConfig
class Conditioner(nn.Module):
def __init__(
self,
output_dim: int,
name: str,
cond_dim: int | None = None,
projection: Literal["none", "linear", "mlp"] = "none",
uncond_type: Literal["learned", "none"] = "none",
**kwargs,
):
super().__init__()
self.name = name
self.output_dim = output_dim
self.cond_dim = cond_dim = cond_dim or output_dim
if projection == "linear":
self.project = nn.Linear(cond_dim, output_dim)
elif projection == "mlp":
self.project = nn.Sequential(
nn.Linear(cond_dim, output_dim),
nn.SiLU(),
nn.Linear(output_dim, output_dim),
)
else:
self.project = nn.Identity()
self.uncond_vector = None
if uncond_type == "learned":
self.uncond_vector = nn.Parameter(torch.zeros(output_dim))
def apply_cond(self, *inputs: Any) -> torch.Tensor:
raise NotImplementedError()
def forward(self, inputs: tuple[Any, ...] | None) -> torch.Tensor:
if inputs is None:
assert self.uncond_vector is not None
return self.uncond_vector.data.view(1, 1, -1)
cond = self.apply_cond(*inputs)
cond = self.project(cond)
return cond
# ------- ESPEAK CONTAINMENT ZONE ------------------------------------------------------------------------------------------------------------------------------------------------
import re
import unicodedata
import inflect
import torch
import torch.nn as nn
from kanjize import number2kanji
from phonemizer.backend import EspeakBackend
from sudachipy import Dictionary, SplitMode
# --- Number normalization code from https://github.com/daniilrobnikov/vits2/blob/main/text/normalize_numbers.py ---
_inflect = inflect.engine()
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
_number_re = re.compile(r"[0-9]+")
def _remove_commas(m: re.Match) -> str:
return m.group(1).replace(",", "")
def _expand_decimal_point(m: re.Match) -> str:
return m.group(1).replace(".", " point ")
def _expand_dollars(m: re.Match) -> str:
match = m.group(1)
parts = match.split(".")
if len(parts) > 2:
return match + " dollars" # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = "dollar" if dollars == 1 else "dollars"
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = "dollar" if dollars == 1 else "dollars"
return "%s %s" % (dollars, dollar_unit)
elif cents:
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s" % (cents, cent_unit)
else:
return "zero dollars"
def _expand_ordinal(m: re.Match) -> str:
return _inflect.number_to_words(m.group(0))
def _expand_number(m: re.Match) -> str:
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return "two thousand"
elif num > 2000 and num < 2010:
return "two thousand " + _inflect.number_to_words(num % 100)
elif num % 100 == 0:
return _inflect.number_to_words(num // 100) + " hundred"
else:
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
else:
return _inflect.number_to_words(num, andword="")
def normalize_numbers(text: str) -> str:
text = re.sub(_comma_number_re, _remove_commas, text)
text = re.sub(_pounds_re, r"\1 pounds", text)
text = re.sub(_dollars_re, _expand_dollars, text)
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
text = re.sub(_ordinal_re, _expand_ordinal, text)
text = re.sub(_number_re, _expand_number, text)
return text
# --- Number normalization code end ---
PAD_ID, UNK_ID, BOS_ID, EOS_ID = 0, 1, 2, 3
SPECIAL_TOKEN_IDS = [PAD_ID, UNK_ID, BOS_ID, EOS_ID]
_punctuation = ';:,.!?¡¿—…"«»“”() *~-/\\&'
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = (
"ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
)
symbols = [*_punctuation, *_letters, *_letters_ipa]
_symbol_to_id = {s: i for i, s in enumerate(symbols, start=len(SPECIAL_TOKEN_IDS))}
def _get_symbol_id(s: str) -> int:
return _symbol_to_id.get(s, 1)
def get_symbol_ids(text: str) -> list[int]:
return list(map(_get_symbol_id, text))
def tokenize_phonemes(phonemes: list[str]) -> tuple[torch.Tensor, list[int]]:
phoneme_ids = [[BOS_ID, *get_symbol_ids(phonemes), EOS_ID] for phonemes in phonemes]
lengths = list(map(len, phoneme_ids))
longest = max(lengths)
phoneme_ids = [[PAD_ID] * (longest - len(ids)) + ids for ids in phoneme_ids]
return torch.tensor(phoneme_ids), lengths
def normalize_jp_text(text: str, tokenizer=Dictionary(dict="full").create()) -> str:
text = unicodedata.normalize("NFKC", text)
text = re.sub(r"\d+", lambda m: number2kanji(int(m[0])), text)
final_text = " ".join([x.reading_form() for x in tokenizer.tokenize(text, SplitMode.A)])
return final_text
def clean(texts: list[str], languages: list[str]) -> list[str]:
texts_out = []
for text, language in zip(texts, languages):
if "ja" in language:
text = normalize_jp_text(text)
else:
text = normalize_numbers(text)
texts_out.append(text)
return texts_out
@cache
def get_backend(language: str) -> "EspeakBackend":
import logging
from phonemizer.backend import EspeakBackend
logger = logging.getLogger("phonemizer")
backend = EspeakBackend(
language,
preserve_punctuation=True,
with_stress=True,
punctuation_marks=_punctuation,
logger=logger,
)
logger.setLevel(logging.ERROR)
return backend
def phonemize(texts: list[str], languages: list[str]) -> list[str]:
texts = clean(texts, languages)
batch_phonemes = []
for text, language in zip(texts, languages):
backend = get_backend(language)
phonemes = backend.phonemize([text], strip=True)
batch_phonemes.append(phonemes[0])
return batch_phonemes
class EspeakPhonemeConditioner(Conditioner):
def __init__(self, output_dim: int, **kwargs):
super().__init__(output_dim, **kwargs)
self.phoneme_embedder = nn.Embedding(len(SPECIAL_TOKEN_IDS) + len(symbols), output_dim)
def apply_cond(self, texts: list[str], languages: list[str]) -> torch.Tensor:
"""
Args:
texts: list of texts to convert to phonemes
languages: ISO 639-1 -or otherwise eSpeak compatible- language code
"""
device = self.phoneme_embedder.weight.device
phonemes = phonemize(texts, languages)
phoneme_ids, _ = tokenize_phonemes(phonemes)
phoneme_embeds = self.phoneme_embedder(phoneme_ids.to(device))
return phoneme_embeds
# ------- ESPEAK CONTAINMENT ZONE ------------------------------------------------------------------------------------------------------------------------------------------------
class FourierConditioner(Conditioner):
def __init__(
self,
output_dim: int,
input_dim: int = 1,
std: float = 1.0,
min_val: float = 0.0,
max_val: float = 1.0,
**kwargs,
):
assert output_dim % 2 == 0
super().__init__(output_dim, **kwargs)
self.register_buffer("weight", torch.randn([output_dim // 2, input_dim]) * std)
self.input_dim, self.min_val, self.max_val = input_dim, min_val, max_val
def apply_cond(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[-1] == self.input_dim
x = (x - self.min_val) / (self.max_val - self.min_val) # [batch_size, seq_len, input_dim]
f = 2 * torch.pi * x.to(self.weight.dtype) @ self.weight.T # [batch_size, seq_len, output_dim // 2]
return torch.cat([f.cos(), f.sin()], dim=-1) # [batch_size, seq_len, output_dim]
class IntegerConditioner(Conditioner):
def __init__(self, output_dim: int, min_val: int = 0, max_val: int = 512, **kwargs):
super().__init__(output_dim, **kwargs)
self.min_val = min_val
self.max_val = max_val
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim)
def apply_cond(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[-1] == 1
return self.int_embedder(x.squeeze(-1) - self.min_val) # [batch_size, seq_len, output_dim]
class PassthroughConditioner(Conditioner):
def __init__(self, output_dim: int, **kwargs):
super().__init__(output_dim, **kwargs)
def apply_cond(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[-1] == self.cond_dim
return x
_cond_cls_map = {
"PassthroughConditioner": PassthroughConditioner,
"EspeakPhonemeConditioner": EspeakPhonemeConditioner,
"FourierConditioner": FourierConditioner,
"IntegerConditioner": IntegerConditioner,
}
def build_conditioners(conditioners: list[dict], output_dim: int) -> list[Conditioner]:
return [_cond_cls_map[config["type"]](output_dim, **config) for config in conditioners]
class PrefixConditioner(Conditioner):
def __init__(self, config: PrefixConditionerConfig, output_dim: int):
super().__init__(output_dim, "prefix", projection=config.projection)
self.conditioners = nn.ModuleList(build_conditioners(config.conditioners, output_dim))
self.norm = nn.LayerNorm(output_dim)
self.required_keys = {c.name for c in self.conditioners if c.uncond_vector is None}
def forward(self, cond_dict: dict) -> torch.Tensor:
if not set(cond_dict).issuperset(self.required_keys):
raise ValueError(f"Missing required keys: {self.required_keys - set(cond_dict)}")
conds = []
for conditioner in self.conditioners:
conds.append(conditioner(cond_dict.get(conditioner.name)))
max_bsz = max(map(len, conds))
assert all(c.shape[0] in (max_bsz, 1) for c in conds)
conds = [c.expand(max_bsz, -1, -1) for c in conds]
return self.norm(self.project(torch.cat(conds, dim=-2)))
supported_language_codes = [
'af', 'am', 'an', 'ar', 'as', 'az', 'ba', 'bg', 'bn', 'bpy', 'bs', 'ca', 'cmn',
'cs', 'cy', 'da', 'de', 'el', 'en-029', 'en-gb', 'en-gb-scotland', 'en-gb-x-gbclan',
'en-gb-x-gbcwmd', 'en-gb-x-rp', 'en-us', 'eo', 'es', 'es-419', 'et', 'eu', 'fa',
'fa-latn', 'fi', 'fr-be', 'fr-ch', 'fr-fr', 'ga', 'gd', 'gn', 'grc', 'gu', 'hak',
'hi', 'hr', 'ht', 'hu', 'hy', 'hyw', 'ia', 'id', 'is', 'it', 'ja', 'jbo', 'ka',
'kk', 'kl', 'kn', 'ko', 'kok', 'ku', 'ky', 'la', 'lfn', 'lt', 'lv', 'mi', 'mk',
'ml', 'mr', 'ms', 'mt', 'my', 'nb', 'nci', 'ne', 'nl', 'om', 'or', 'pa', 'pap',
'pl', 'pt', 'pt-br', 'py', 'quc', 'ro', 'ru', 'ru-lv', 'sd', 'shn', 'si', 'sk',
'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'tn', 'tr', 'tt', 'ur', 'uz', 'vi',
'vi-vn-x-central', 'vi-vn-x-south', 'yue'
] # fmt: off
def make_cond_dict(
text: str = "It would be nice to have time for testing, indeed.",
language: str = "en-us",
speaker: torch.Tensor | None = None,
emotion: list[float] = [0.3077, 0.0256, 0.0256, 0.0256, 0.0256, 0.0256, 0.2564, 0.3077],
fmax: float = 22050.0,
pitch_std: float = 20.0,
speaking_rate: float = 15.0,
vqscore_8: list[float] = [0.78] * 8,
ctc_loss: float = 0.0,
dnsmos_ovrl: float = 4.0,
speaker_noised: bool = False,
unconditional_keys: Iterable[str] = {"vqscore_8", "dnsmos_ovrl"},
device: str = "cuda",
) -> dict:
"""
A helper to build the 'cond_dict' that the model expects.
By default, it will generate a random speaker embedding
"""
assert language.lower() in supported_language_codes, "Please pick a supported language"
language_code_to_id = {lang: i for i, lang in enumerate(supported_language_codes)}
cond_dict = {
"espeak": ([text], [language]),
"speaker": speaker,
"emotion": emotion,
"fmax": fmax,
"pitch_std": pitch_std,
"speaking_rate": speaking_rate,
"language_id": language_code_to_id[language],
"vqscore_8": vqscore_8,
"ctc_loss": ctc_loss,
"dnsmos_ovrl": dnsmos_ovrl,
"speaker_noised": int(speaker_noised),
}
for k in unconditional_keys:
cond_dict.pop(k, None)
for k, v in cond_dict.items():
if isinstance(v, (float, int, list)):
v = torch.tensor(v)
if isinstance(v, torch.Tensor):
cond_dict[k] = v.view(1, 1, -1).to(device)
if k == "emotion":
cond_dict[k] /= cond_dict[k].sum(dim=-1)
return cond_dict