Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torchaudio | |
from transformers.models.dac import DacModel | |
class DACAutoencoder: | |
def __init__(self): | |
super().__init__() | |
self.dac = DacModel.from_pretrained("descript/dac_44khz") | |
self.dac.eval().requires_grad_(False) | |
self.codebook_size = self.dac.config.codebook_size | |
self.num_codebooks = self.dac.quantizer.n_codebooks | |
self.sampling_rate = self.dac.config.sampling_rate | |
def preprocess(self, wav: torch.Tensor, sr: int) -> torch.Tensor: | |
wav = torchaudio.functional.resample(wav, sr, 44_100) | |
right_pad = math.ceil(wav.shape[-1] / 512) * 512 - wav.shape[-1] | |
return torch.nn.functional.pad(wav, (0, right_pad)) | |
def encode(self, wav: torch.Tensor) -> torch.Tensor: | |
return self.dac.encode(wav).audio_codes | |
def decode(self, codes: torch.Tensor) -> torch.Tensor: | |
return self.dac.decode(audio_codes=codes).audio_values.unsqueeze(1) | |