Zonos / zonos /speaker_cloning.py
Steveeeeeeen's picture
Steveeeeeeen HF staff
ZeroGPU (#2)
0af138e verified
raw
history blame
14.2 kB
import math
from functools import cache
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from huggingface_hub import hf_hub_download
import os
class logFbankCal(nn.Module):
def __init__(
self,
sample_rate: int = 16_000,
n_fft: int = 512,
win_length: float = 0.025,
hop_length: float = 0.01,
n_mels: int = 80,
):
super().__init__()
self.fbankCal = torchaudio.transforms.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
win_length=int(win_length * sample_rate),
hop_length=int(hop_length * sample_rate),
n_mels=n_mels,
)
def forward(self, x):
out = self.fbankCal(x)
out = torch.log(out + 1e-6)
out = out - out.mean(axis=2).unsqueeze(dim=2)
return out
class ASP(nn.Module):
# Attentive statistics pooling
def __init__(self, in_planes, acoustic_dim):
super(ASP, self).__init__()
outmap_size = int(acoustic_dim / 8)
self.out_dim = in_planes * 8 * outmap_size * 2
self.attention = nn.Sequential(
nn.Conv1d(in_planes * 8 * outmap_size, 128, kernel_size=1),
nn.ReLU(),
nn.BatchNorm1d(128),
nn.Conv1d(128, in_planes * 8 * outmap_size, kernel_size=1),
nn.Softmax(dim=2),
)
def forward(self, x):
x = x.reshape(x.size()[0], -1, x.size()[-1])
w = self.attention(x)
mu = torch.sum(x * w, dim=2)
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5))
x = torch.cat((mu, sg), 1)
x = x.view(x.size()[0], -1)
return x
class SimAMBasicBlock(nn.Module):
expansion = 1
def __init__(self, ConvLayer, NormLayer, in_planes, planes, stride=1, block_id=1):
super(SimAMBasicBlock, self).__init__()
self.conv1 = ConvLayer(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = NormLayer(planes)
self.conv2 = ConvLayer(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = NormLayer(planes)
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
self.downsample = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.downsample = nn.Sequential(
ConvLayer(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
NormLayer(self.expansion * planes),
)
def forward(self, x):
out = self.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out = self.SimAM(out)
out += self.downsample(x)
out = self.relu(out)
return out
def SimAM(self, X, lambda_p=1e-4):
n = X.shape[2] * X.shape[3] - 1
d = (X - X.mean(dim=[2, 3], keepdim=True)).pow(2)
v = d.sum(dim=[2, 3], keepdim=True) / n
E_inv = d / (4 * (v + lambda_p)) + 0.5
return X * self.sigmoid(E_inv)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, ConvLayer, NormLayer, in_planes, planes, stride=1, block_id=1):
super(BasicBlock, self).__init__()
self.conv1 = ConvLayer(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = NormLayer(planes)
self.conv2 = ConvLayer(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = NormLayer(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.downsample = nn.Sequential(
ConvLayer(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
NormLayer(self.expansion * planes),
)
def forward(self, x):
out = self.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.downsample(x)
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, ConvLayer, NormLayer, in_planes, planes, stride=1, block_id=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes),
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, in_planes, block, num_blocks, in_ch=1, feat_dim="2d", **kwargs):
super(ResNet, self).__init__()
if feat_dim == "1d":
self.NormLayer = nn.BatchNorm1d
self.ConvLayer = nn.Conv1d
elif feat_dim == "2d":
self.NormLayer = nn.BatchNorm2d
self.ConvLayer = nn.Conv2d
elif feat_dim == "3d":
self.NormLayer = nn.BatchNorm3d
self.ConvLayer = nn.Conv3d
else:
print("error")
self.in_planes = in_planes
self.conv1 = self.ConvLayer(in_ch, in_planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = self.NormLayer(in_planes)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, in_planes, num_blocks[0], stride=1, block_id=1)
self.layer2 = self._make_layer(block, in_planes * 2, num_blocks[1], stride=2, block_id=2)
self.layer3 = self._make_layer(block, in_planes * 4, num_blocks[2], stride=2, block_id=3)
self.layer4 = self._make_layer(block, in_planes * 8, num_blocks[3], stride=2, block_id=4)
def _make_layer(self, block, planes, num_blocks, stride, block_id=1):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.ConvLayer, self.NormLayer, self.in_planes, planes, stride, block_id))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = self.relu(self.bn1(self.conv1(x)))
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def ResNet293(in_planes: int, **kwargs):
return ResNet(in_planes, SimAMBasicBlock, [10, 20, 64, 3], **kwargs)
class ResNet293_based(nn.Module):
def __init__(
self,
in_planes: int = 64,
embd_dim: int = 256,
acoustic_dim: int = 80,
featCal=None,
dropout: float = 0,
**kwargs,
):
super(ResNet293_based, self).__init__()
self.featCal = featCal
self.front = ResNet293(in_planes)
block_expansion = SimAMBasicBlock.expansion
self.pooling = ASP(in_planes * block_expansion, acoustic_dim)
self.bottleneck = nn.Linear(self.pooling.out_dim, embd_dim)
self.drop = nn.Dropout(dropout) if dropout else None
def forward(self, x):
x = self.featCal(x)
x = self.front(x.unsqueeze(dim=1))
x = self.pooling(x)
if self.drop:
x = self.drop(x)
x = self.bottleneck(x)
return x
class SEModule(nn.Module):
def __init__(self, channels, bottleneck=128):
super(SEModule, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(channels, bottleneck, kernel_size=1, padding=0),
nn.ReLU(),
# nn.BatchNorm1d(bottleneck), # Removed
nn.Conv1d(bottleneck, channels, kernel_size=1, padding=0),
nn.Sigmoid(),
)
def forward(self, input):
x = self.se(input)
return input * x
class Bottle2neck(nn.Module):
def __init__(self, inplanes, planes, kernel_size=None, dilation=None, scale=8):
super(Bottle2neck, self).__init__()
width = int(math.floor(planes / scale))
self.conv1 = nn.Conv1d(inplanes, width * scale, kernel_size=1)
self.bn1 = nn.BatchNorm1d(width * scale)
self.nums = scale - 1
convs = []
bns = []
num_pad = math.floor(kernel_size / 2) * dilation
for i in range(self.nums):
convs.append(nn.Conv1d(width, width, kernel_size=kernel_size, dilation=dilation, padding=num_pad))
bns.append(nn.BatchNorm1d(width))
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(bns)
self.conv3 = nn.Conv1d(width * scale, planes, kernel_size=1)
self.bn3 = nn.BatchNorm1d(planes)
self.relu = nn.ReLU()
self.width = width
self.se = SEModule(planes)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.bn1(out)
spx = torch.split(out, self.width, 1)
for i in range(self.nums):
if i == 0:
sp = spx[i]
else:
sp = sp + spx[i]
sp = self.convs[i](sp)
sp = self.relu(sp)
sp = self.bns[i](sp)
if i == 0:
out = sp
else:
out = torch.cat((out, sp), 1)
out = torch.cat((out, spx[self.nums]), 1)
out = self.conv3(out)
out = self.relu(out)
out = self.bn3(out)
out = self.se(out)
out += residual
return out
class ECAPA_TDNN(nn.Module):
def __init__(self, C, featCal):
super(ECAPA_TDNN, self).__init__()
self.featCal = featCal
self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2)
self.relu = nn.ReLU()
self.bn1 = nn.BatchNorm1d(C)
self.layer1 = Bottle2neck(C, C, kernel_size=3, dilation=2, scale=8)
self.layer2 = Bottle2neck(C, C, kernel_size=3, dilation=3, scale=8)
self.layer3 = Bottle2neck(C, C, kernel_size=3, dilation=4, scale=8)
# I fixed the shape of the output from MFA layer, that is close to the setting from ECAPA paper.
self.layer4 = nn.Conv1d(3 * C, 1536, kernel_size=1)
self.attention = nn.Sequential(
nn.Conv1d(4608, 256, kernel_size=1),
nn.ReLU(),
nn.BatchNorm1d(256),
nn.Tanh(), # Added
nn.Conv1d(256, 1536, kernel_size=1),
nn.Softmax(dim=2),
)
self.bn5 = nn.BatchNorm1d(3072)
self.fc6 = nn.Linear(3072, 192)
self.bn6 = nn.BatchNorm1d(192)
def forward(self, x):
x = self.featCal(x)
x = self.conv1(x)
x = self.relu(x)
x = self.bn1(x)
x1 = self.layer1(x)
x2 = self.layer2(x + x1)
x3 = self.layer3(x + x1 + x2)
x = self.layer4(torch.cat((x1, x2, x3), dim=1))
x = self.relu(x)
t = x.size()[-1]
global_x = torch.cat(
(
x,
torch.mean(x, dim=2, keepdim=True).repeat(1, 1, t),
torch.sqrt(torch.var(x, dim=2, keepdim=True).clamp(min=1e-4)).repeat(1, 1, t),
),
dim=1,
)
w = self.attention(global_x)
mu = torch.sum(x * w, dim=2)
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-4))
x = torch.cat((mu, sg), 1)
x = self.bn5(x)
x = self.fc6(x)
x = self.bn6(x)
return x
class SpeakerEmbedding(nn.Module):
def __init__(self, ckpt_path: str = "ResNet293_SimAM_ASP_base.pt", device: str = "cuda"):
super().__init__()
self.device = device
with torch.device(device):
self.model = ResNet293_based()
self.model.load_state_dict(torch.load(ckpt_path, weights_only=True, mmap=True))
self.model.featCal = logFbankCal()
self.requires_grad_(False).eval()
@property
def dtype(self):
return next(self.parameters()).dtype
@cache
def _get_resampler(self, orig_sample_rate: int):
return torchaudio.transforms.Resample(orig_sample_rate, 16_000).to(self.device)
def prepare_input(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
assert wav.ndim < 3
if wav.ndim == 2:
wav = wav.mean(0, keepdim=True)
wav = self._get_resampler(sample_rate)(wav)
return wav
def forward(self, wav: torch.Tensor, sample_rate: int):
wav = self.prepare_input(wav, sample_rate).to(self.device, self.dtype)
return self.model(wav).to(wav.device)
class SpeakerEmbeddingLDA(nn.Module):
def __init__(
self,
device: str = "cuda",
):
super().__init__()
spk_model_path = hf_hub_download(repo_id="Zyphra/Zonos-v0.1-speaker-embedding", filename="ResNet293_SimAM_ASP_base.pt")
lda_spk_model_path = hf_hub_download(repo_id="Zyphra/Zonos-v0.1-speaker-embedding", filename="ResNet293_SimAM_ASP_base_LDA-128.pt")
self.device = device
with torch.device(device):
self.model = SpeakerEmbedding(spk_model_path, device)
lda_sd = torch.load(lda_spk_model_path, weights_only=True)
out_features, in_features = lda_sd["weight"].shape
self.lda = nn.Linear(in_features, out_features, bias=True, dtype=torch.float32)
self.lda.load_state_dict(lda_sd)
self.requires_grad_(False).eval()
def forward(self, wav: torch.Tensor, sample_rate: int):
emb = self.model(wav, sample_rate).to(torch.float32)
return emb, self.lda(emb)