Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None): | |
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension. | |
Args: | |
input (torch.Tensor): The input tensor containing probabilities. | |
num_samples (int): Number of samples to draw. | |
replacement (bool): Whether to draw with replacement or not. | |
Keywords args: | |
generator (torch.Generator): A pseudorandom number generator for sampling. | |
Returns: | |
torch.Tensor: Last dimension contains num_samples indices | |
sampled from the multinomial probability distribution | |
located in the last dimension of tensor input. | |
""" | |
if num_samples == 1: | |
q = torch.empty_like(input).exponential_(1, generator=generator) | |
return torch.argmax(input / q, dim=-1, keepdim=True).to(torch.int64) | |
input_ = input.reshape(-1, input.shape[-1]) | |
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator) | |
output = output_.reshape(*list(input.shape[:-1]), -1) | |
return output | |
def apply_top_k( | |
probs: torch.Tensor, | |
k: int, | |
) -> torch.Tensor: | |
"""Sample next token from top K values along the last dimension of the input probs tensor. | |
Args: | |
probs (torch.Tensor): Input probabilities with token candidates on the last dimension. | |
k (int): The k in “top-k”. | |
Returns: | |
torch.Tensor: Sampled tokens. | |
""" | |
v, _ = torch.topk(probs, min(k, probs.size(-1))) | |
pivot = v.select(-1, -1).unsqueeze(-1) | |
probs = torch.where(probs < pivot, 0.0, probs) | |
probs.div_(probs.sum(dim=-1, keepdim=True)) | |
return probs | |
def apply_top_p(probs: torch.Tensor, p: float) -> torch.Tensor: | |
"""Sample next token from top P probabilities along the last dimension of the input probs tensor. | |
Args: | |
probs (torch.Tensor): Input probabilities with token candidates on the last dimension. | |
p (int): The p in “top-p”. | |
Returns: | |
torch.Tensor: Sampled tokens. | |
""" | |
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) | |
probs_sum = torch.cumsum(probs_sort, dim=-1) | |
mask = probs_sum - probs_sort > p | |
probs_sort *= (~mask).float() | |
probs = probs.scatter(-1, probs_idx, probs_sort) | |
probs.div_(probs.sum(dim=-1, keepdim=True)) | |
return probs | |
def apply_min_p(probs: torch.Tensor, min_p: float) -> torch.Tensor: | |
"""Sample next token using min-p sampling. | |
Args: | |
scores (torch.FloatTensor): Input logits with token candidates on the last dimension. | |
min_p (float): Minimum token probability, scaled by the probability of the most likely token. | |
Must be between 0 and 1. Typical values are in the 0.01-0.2 range. | |
Returns: | |
torch.Tensor: Sampled tokens. | |
""" | |
top_probs, _ = probs.max(dim=-1, keepdim=True) | |
tokens_to_remove = probs < (min_p * top_probs) | |
probs = probs.masked_fill(tokens_to_remove, 0.0) | |
probs.div_(probs.sum(dim=-1, keepdim=True)) | |
return probs | |
def modify_logit_for_repetition_penalty( | |
logits: torch.Tensor, | |
generated_tokens: torch.Tensor, | |
repetition_penalty: float, | |
repetition_penalty_window: int, | |
): | |
"""See https://arxiv.org/abs/1909.05858 | |
Apply repetition penalty over a sliding window of the last `repetition_penalty_window` tokens. | |
logits: (batch_size, n_codebooks, vocab_size) | |
generated_tokens: (batch_size, n_codebooks, seq_len) | |
""" | |
generated_tokens = generated_tokens[..., -repetition_penalty_window:] | |
generated_tokens = generated_tokens.clamp_max(logits.shape[-1] - 1).to(torch.int64) | |
rp = torch.full_like(logits, repetition_penalty) | |
factors = torch.ones_like(logits).scatter_reduce(2, generated_tokens, rp, reduce="prod") | |
return torch.where(logits <= 0, logits * factors, logits / factors) | |
def sample_from_logits( | |
logits: torch.Tensor, | |
temperature: float = 1.0, | |
top_p: float = 0.0, | |
top_k: int = 0, | |
min_p: float = 0.0, | |
generated_tokens: torch.Tensor | None = None, | |
repetition_penalty: float = 3.0, | |
repetition_penalty_window: float = 2, | |
) -> torch.Tensor: | |
"""Sample next token from logits using temperature, top-p, top-k, or min-p sampling. | |
Args: | |
logits (torch.Tensor): Input logits with token candidates on the last dimension. | |
temperature (float): Sampling temperature. Lower temperature results in more deterministic samples. | |
top_p (float): The p in “top-p”. | |
top_k (int): The k in “top-k”. | |
min_p (float): Minimum token probability, scaled by the probability of the most likely token. | |
Must be between 0 and 1. Typical values are in the 0.01-0.2 range. | |
Returns: | |
torch.Tensor: Sampled tokens. | |
""" | |
if repetition_penalty != 1.0 and generated_tokens is not None: | |
logits = modify_logit_for_repetition_penalty(logits, generated_tokens, repetition_penalty, repetition_penalty_window) | |
if temperature > 0: | |
probs = torch.softmax(logits / temperature, dim=-1) | |
if top_p > 0: | |
probs = apply_top_p(probs, top_p) | |
if top_k > 0: | |
probs = apply_top_k(probs, top_k) | |
if min_p > 0: | |
probs = apply_min_p(probs, min_p) | |
next_token = multinomial(probs, num_samples=1) | |
else: | |
next_token = torch.argmax(logits, dim=-1, keepdim=True) | |
return next_token # [batch_size, num_codebooks, 1] | |