Zonos / zonos /sampling.py
hysts's picture
hysts HF staff
ZeroGPU
9aaa3a8
raw
history blame
5.53 kB
import torch
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None):
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension.
Args:
input (torch.Tensor): The input tensor containing probabilities.
num_samples (int): Number of samples to draw.
replacement (bool): Whether to draw with replacement or not.
Keywords args:
generator (torch.Generator): A pseudorandom number generator for sampling.
Returns:
torch.Tensor: Last dimension contains num_samples indices
sampled from the multinomial probability distribution
located in the last dimension of tensor input.
"""
if num_samples == 1:
q = torch.empty_like(input).exponential_(1, generator=generator)
return torch.argmax(input / q, dim=-1, keepdim=True).to(torch.int64)
input_ = input.reshape(-1, input.shape[-1])
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator)
output = output_.reshape(*list(input.shape[:-1]), -1)
return output
def apply_top_k(
probs: torch.Tensor,
k: int,
) -> torch.Tensor:
"""Sample next token from top K values along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
k (int): The k in “top-k”.
Returns:
torch.Tensor: Sampled tokens.
"""
v, _ = torch.topk(probs, min(k, probs.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
probs = torch.where(probs < pivot, 0.0, probs)
probs.div_(probs.sum(dim=-1, keepdim=True))
return probs
def apply_top_p(probs: torch.Tensor, p: float) -> torch.Tensor:
"""Sample next token from top P probabilities along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
p (int): The p in “top-p”.
Returns:
torch.Tensor: Sampled tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort *= (~mask).float()
probs = probs.scatter(-1, probs_idx, probs_sort)
probs.div_(probs.sum(dim=-1, keepdim=True))
return probs
def apply_min_p(probs: torch.Tensor, min_p: float) -> torch.Tensor:
"""Sample next token using min-p sampling.
Args:
scores (torch.FloatTensor): Input logits with token candidates on the last dimension.
min_p (float): Minimum token probability, scaled by the probability of the most likely token.
Must be between 0 and 1. Typical values are in the 0.01-0.2 range.
Returns:
torch.Tensor: Sampled tokens.
"""
top_probs, _ = probs.max(dim=-1, keepdim=True)
tokens_to_remove = probs < (min_p * top_probs)
probs = probs.masked_fill(tokens_to_remove, 0.0)
probs.div_(probs.sum(dim=-1, keepdim=True))
return probs
def modify_logit_for_repetition_penalty(
logits: torch.Tensor,
generated_tokens: torch.Tensor,
repetition_penalty: float,
repetition_penalty_window: int,
):
"""See https://arxiv.org/abs/1909.05858
Apply repetition penalty over a sliding window of the last `repetition_penalty_window` tokens.
logits: (batch_size, n_codebooks, vocab_size)
generated_tokens: (batch_size, n_codebooks, seq_len)
"""
generated_tokens = generated_tokens[..., -repetition_penalty_window:]
generated_tokens = generated_tokens.clamp_max(logits.shape[-1] - 1).to(torch.int64)
rp = torch.full_like(logits, repetition_penalty)
factors = torch.ones_like(logits).scatter_reduce(2, generated_tokens, rp, reduce="prod")
return torch.where(logits <= 0, logits * factors, logits / factors)
def sample_from_logits(
logits: torch.Tensor,
temperature: float = 1.0,
top_p: float = 0.0,
top_k: int = 0,
min_p: float = 0.0,
generated_tokens: torch.Tensor | None = None,
repetition_penalty: float = 3.0,
repetition_penalty_window: float = 2,
) -> torch.Tensor:
"""Sample next token from logits using temperature, top-p, top-k, or min-p sampling.
Args:
logits (torch.Tensor): Input logits with token candidates on the last dimension.
temperature (float): Sampling temperature. Lower temperature results in more deterministic samples.
top_p (float): The p in “top-p”.
top_k (int): The k in “top-k”.
min_p (float): Minimum token probability, scaled by the probability of the most likely token.
Must be between 0 and 1. Typical values are in the 0.01-0.2 range.
Returns:
torch.Tensor: Sampled tokens.
"""
if repetition_penalty != 1.0 and generated_tokens is not None:
logits = modify_logit_for_repetition_penalty(logits, generated_tokens, repetition_penalty, repetition_penalty_window)
if temperature > 0:
probs = torch.softmax(logits / temperature, dim=-1)
if top_p > 0:
probs = apply_top_p(probs, top_p)
if top_k > 0:
probs = apply_top_k(probs, top_k)
if min_p > 0:
probs = apply_min_p(probs, min_p)
next_token = multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(logits, dim=-1, keepdim=True)
return next_token # [batch_size, num_codebooks, 1]