Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,418 Bytes
0af138e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
from functools import cache
from typing import Any, Literal, Iterable
import torch
import torch.nn as nn
from zonos.config import PrefixConditionerConfig
class Conditioner(nn.Module):
def __init__(
self,
output_dim: int,
name: str,
cond_dim: int | None = None,
projection: Literal["none", "linear", "mlp"] = "none",
uncond_type: Literal["learned", "none"] = "none",
**kwargs,
):
super().__init__()
self.name = name
self.output_dim = output_dim
self.cond_dim = cond_dim = cond_dim or output_dim
if projection == "linear":
self.project = nn.Linear(cond_dim, output_dim)
elif projection == "mlp":
self.project = nn.Sequential(
nn.Linear(cond_dim, output_dim),
nn.SiLU(),
nn.Linear(output_dim, output_dim),
)
else:
self.project = nn.Identity()
self.uncond_vector = None
if uncond_type == "learned":
self.uncond_vector = nn.Parameter(torch.zeros(output_dim))
def apply_cond(self, *inputs: Any) -> torch.Tensor:
raise NotImplementedError()
def forward(self, inputs: tuple[Any, ...] | None) -> torch.Tensor:
if inputs is None:
assert self.uncond_vector is not None
return self.uncond_vector.data.view(1, 1, -1)
cond = self.apply_cond(*inputs)
cond = self.project(cond)
return cond
# ------- ESPEAK CONTAINMENT ZONE ------------------------------------------------------------------------------------------------------------------------------------------------
import re
import unicodedata
import inflect
import torch
import torch.nn as nn
from kanjize import number2kanji
from phonemizer.backend import EspeakBackend
from sudachipy import Dictionary, SplitMode
# --- Number normalization code from https://github.com/daniilrobnikov/vits2/blob/main/text/normalize_numbers.py ---
_inflect = inflect.engine()
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
_number_re = re.compile(r"[0-9]+")
def _remove_commas(m: re.Match) -> str:
return m.group(1).replace(",", "")
def _expand_decimal_point(m: re.Match) -> str:
return m.group(1).replace(".", " point ")
def _expand_dollars(m: re.Match) -> str:
match = m.group(1)
parts = match.split(".")
if len(parts) > 2:
return match + " dollars" # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = "dollar" if dollars == 1 else "dollars"
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = "dollar" if dollars == 1 else "dollars"
return "%s %s" % (dollars, dollar_unit)
elif cents:
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s" % (cents, cent_unit)
else:
return "zero dollars"
def _expand_ordinal(m: re.Match) -> str:
return _inflect.number_to_words(m.group(0))
def _expand_number(m: re.Match) -> str:
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return "two thousand"
elif num > 2000 and num < 2010:
return "two thousand " + _inflect.number_to_words(num % 100)
elif num % 100 == 0:
return _inflect.number_to_words(num // 100) + " hundred"
else:
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
else:
return _inflect.number_to_words(num, andword="")
def normalize_numbers(text: str) -> str:
text = re.sub(_comma_number_re, _remove_commas, text)
text = re.sub(_pounds_re, r"\1 pounds", text)
text = re.sub(_dollars_re, _expand_dollars, text)
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
text = re.sub(_ordinal_re, _expand_ordinal, text)
text = re.sub(_number_re, _expand_number, text)
return text
# --- Number normalization code end ---
PAD_ID, UNK_ID, BOS_ID, EOS_ID = 0, 1, 2, 3
SPECIAL_TOKEN_IDS = [PAD_ID, UNK_ID, BOS_ID, EOS_ID]
_punctuation = ';:,.!?¡¿—…"«»“”() *~-/\\&'
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = (
"ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
)
symbols = [*_punctuation, *_letters, *_letters_ipa]
_symbol_to_id = {s: i for i, s in enumerate(symbols, start=len(SPECIAL_TOKEN_IDS))}
def _get_symbol_id(s: str) -> int:
return _symbol_to_id.get(s, 1)
def get_symbol_ids(text: str) -> list[int]:
return list(map(_get_symbol_id, text))
def tokenize_phonemes(phonemes: list[str]) -> tuple[torch.Tensor, list[int]]:
phoneme_ids = [[BOS_ID, *get_symbol_ids(phonemes), EOS_ID] for phonemes in phonemes]
lengths = list(map(len, phoneme_ids))
longest = max(lengths)
phoneme_ids = [[PAD_ID] * (longest - len(ids)) + ids for ids in phoneme_ids]
return torch.tensor(phoneme_ids), lengths
def normalize_jp_text(text: str, tokenizer=Dictionary(dict="full").create()) -> str:
text = unicodedata.normalize("NFKC", text)
text = re.sub(r"\d+", lambda m: number2kanji(int(m[0])), text)
final_text = " ".join([x.reading_form() for x in tokenizer.tokenize(text, SplitMode.A)])
return final_text
def clean(texts: list[str], languages: list[str]) -> list[str]:
texts_out = []
for text, language in zip(texts, languages):
if "ja" in language:
text = normalize_jp_text(text)
else:
text = normalize_numbers(text)
texts_out.append(text)
return texts_out
@cache
def get_backend(language: str) -> "EspeakBackend":
import logging
from phonemizer.backend import EspeakBackend
logger = logging.getLogger("phonemizer")
backend = EspeakBackend(
language,
preserve_punctuation=True,
with_stress=True,
punctuation_marks=_punctuation,
logger=logger,
)
logger.setLevel(logging.ERROR)
return backend
def phonemize(texts: list[str], languages: list[str]) -> list[str]:
texts = clean(texts, languages)
batch_phonemes = []
for text, language in zip(texts, languages):
backend = get_backend(language)
phonemes = backend.phonemize([text], strip=True)
batch_phonemes.append(phonemes[0])
return batch_phonemes
class EspeakPhonemeConditioner(Conditioner):
def __init__(self, output_dim: int, **kwargs):
super().__init__(output_dim, **kwargs)
self.phoneme_embedder = nn.Embedding(len(SPECIAL_TOKEN_IDS) + len(symbols), output_dim)
def apply_cond(self, texts: list[str], languages: list[str]) -> torch.Tensor:
"""
Args:
texts: list of texts to convert to phonemes
languages: ISO 639-1 -or otherwise eSpeak compatible- language code
"""
device = self.phoneme_embedder.weight.device
phonemes = phonemize(texts, languages)
phoneme_ids, _ = tokenize_phonemes(phonemes)
phoneme_embeds = self.phoneme_embedder(phoneme_ids.to(device))
return phoneme_embeds
# ------- ESPEAK CONTAINMENT ZONE ------------------------------------------------------------------------------------------------------------------------------------------------
class FourierConditioner(Conditioner):
def __init__(
self,
output_dim: int,
input_dim: int = 1,
std: float = 1.0,
min_val: float = 0.0,
max_val: float = 1.0,
**kwargs,
):
assert output_dim % 2 == 0
super().__init__(output_dim, **kwargs)
self.register_buffer("weight", torch.randn([output_dim // 2, input_dim]) * std)
self.input_dim, self.min_val, self.max_val = input_dim, min_val, max_val
def apply_cond(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[-1] == self.input_dim
x = (x - self.min_val) / (self.max_val - self.min_val) # [batch_size, seq_len, input_dim]
f = 2 * torch.pi * x.to(self.weight.dtype) @ self.weight.T # [batch_size, seq_len, output_dim // 2]
return torch.cat([f.cos(), f.sin()], dim=-1) # [batch_size, seq_len, output_dim]
class IntegerConditioner(Conditioner):
def __init__(self, output_dim: int, min_val: int = 0, max_val: int = 512, **kwargs):
super().__init__(output_dim, **kwargs)
self.min_val = min_val
self.max_val = max_val
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim)
def apply_cond(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[-1] == 1
return self.int_embedder(x.squeeze(-1) - self.min_val) # [batch_size, seq_len, output_dim]
class PassthroughConditioner(Conditioner):
def __init__(self, output_dim: int, **kwargs):
super().__init__(output_dim, **kwargs)
def apply_cond(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[-1] == self.cond_dim
return x
_cond_cls_map = {
"PassthroughConditioner": PassthroughConditioner,
"EspeakPhonemeConditioner": EspeakPhonemeConditioner,
"FourierConditioner": FourierConditioner,
"IntegerConditioner": IntegerConditioner,
}
def build_conditioners(conditioners: list[dict], output_dim: int) -> list[Conditioner]:
return [_cond_cls_map[config["type"]](output_dim, **config) for config in conditioners]
class PrefixConditioner(Conditioner):
def __init__(self, config: PrefixConditionerConfig, output_dim: int):
super().__init__(output_dim, "prefix", projection=config.projection)
self.conditioners = nn.ModuleList(build_conditioners(config.conditioners, output_dim))
self.norm = nn.LayerNorm(output_dim)
self.required_keys = {c.name for c in self.conditioners if c.uncond_vector is None}
def forward(self, cond_dict: dict) -> torch.Tensor:
if not set(cond_dict).issuperset(self.required_keys):
raise ValueError(f"Missing required keys: {self.required_keys - set(cond_dict)}")
conds = []
for conditioner in self.conditioners:
conds.append(conditioner(cond_dict.get(conditioner.name)))
max_bsz = max(map(len, conds))
assert all(c.shape[0] in (max_bsz, 1) for c in conds)
conds = [c.expand(max_bsz, -1, -1) for c in conds]
return self.norm(self.project(torch.cat(conds, dim=-2)))
supported_language_codes = [
'af', 'am', 'an', 'ar', 'as', 'az', 'ba', 'bg', 'bn', 'bpy', 'bs', 'ca', 'cmn',
'cs', 'cy', 'da', 'de', 'el', 'en-029', 'en-gb', 'en-gb-scotland', 'en-gb-x-gbclan',
'en-gb-x-gbcwmd', 'en-gb-x-rp', 'en-us', 'eo', 'es', 'es-419', 'et', 'eu', 'fa',
'fa-latn', 'fi', 'fr-be', 'fr-ch', 'fr-fr', 'ga', 'gd', 'gn', 'grc', 'gu', 'hak',
'hi', 'hr', 'ht', 'hu', 'hy', 'hyw', 'ia', 'id', 'is', 'it', 'ja', 'jbo', 'ka',
'kk', 'kl', 'kn', 'ko', 'kok', 'ku', 'ky', 'la', 'lfn', 'lt', 'lv', 'mi', 'mk',
'ml', 'mr', 'ms', 'mt', 'my', 'nb', 'nci', 'ne', 'nl', 'om', 'or', 'pa', 'pap',
'pl', 'pt', 'pt-br', 'py', 'quc', 'ro', 'ru', 'ru-lv', 'sd', 'shn', 'si', 'sk',
'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'tn', 'tr', 'tt', 'ur', 'uz', 'vi',
'vi-vn-x-central', 'vi-vn-x-south', 'yue'
] # fmt: off
def make_cond_dict(
text: str = "It would be nice to have time for testing, indeed.",
language: str = "en-us",
speaker: torch.Tensor | None = None,
emotion: list[float] = [0.3077, 0.0256, 0.0256, 0.0256, 0.0256, 0.0256, 0.2564, 0.3077],
fmax: float = 22050.0,
pitch_std: float = 20.0,
speaking_rate: float = 15.0,
vqscore_8: list[float] = [0.78] * 8,
ctc_loss: float = 0.0,
dnsmos_ovrl: float = 4.0,
speaker_noised: bool = False,
unconditional_keys: Iterable[str] = {"vqscore_8", "dnsmos_ovrl"},
device: str = "cuda",
) -> dict:
"""
A helper to build the 'cond_dict' that the model expects.
By default, it will generate a random speaker embedding
"""
assert language.lower() in supported_language_codes, "Please pick a supported language"
language_code_to_id = {lang: i for i, lang in enumerate(supported_language_codes)}
cond_dict = {
"espeak": ([text], [language]),
"speaker": speaker,
"emotion": emotion,
"fmax": fmax,
"pitch_std": pitch_std,
"speaking_rate": speaking_rate,
"language_id": language_code_to_id[language],
"vqscore_8": vqscore_8,
"ctc_loss": ctc_loss,
"dnsmos_ovrl": dnsmos_ovrl,
"speaker_noised": int(speaker_noised),
}
for k in unconditional_keys:
cond_dict.pop(k, None)
for k, v in cond_dict.items():
if isinstance(v, (float, int, list)):
v = torch.tensor(v)
if isinstance(v, torch.Tensor):
cond_dict[k] = v.view(1, 1, -1).to(device)
if k == "emotion":
cond_dict[k] /= cond_dict[k].sum(dim=-1)
return cond_dict
|