import os import shlex import subprocess # install requirements os.system("pip install -r requirements.txt") # wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/blob/main/token2wav/campplus.onnx in token2wav folder os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/blob/main/token2wav/campplus.onnx -P token2wav") os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/blob/main/token2wav/flow.pt -P token2wav") os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/blob/main/token2wav/flow.yaml -P token2wav") os.system("wget https://huggingface.co/stepfun-ai/Step-Audio-2-mini/blob/main/token2wav/hift.pt -P token2wav") # get hf token hf_token = os.getenv("HF_TOKEN", None) os.environ["HF_TOKEN"] = hf_token import tempfile import traceback from pathlib import Path import spaces import gradio as gr def save_tmp_audio(audio, cache_dir): with tempfile.NamedTemporaryFile( dir=cache_dir, delete=False, suffix=".wav" ) as temp_audio: temp_audio.write(audio) return temp_audio.name def add_message(chatbot, history, mic, text): if not mic and not text: return chatbot, history, "Input is empty" if text: chatbot.append({"role": "user", "content": text}) history.append({"role": "human", "content": text}) elif mic and Path(mic).exists(): chatbot.append({"role": "user", "content": {"path": mic}}) history.append({"role": "human", "content": [{"type":"audio", "audio": mic}]}) print(f"{history=}") return chatbot, history, None def reset_state(system_prompt): return [], [{"role": "system", "content": system_prompt}] @spaces.GPU def predict(chatbot, history, audio_model, token2wav, prompt_wav, cache_dir): try: history.append({"role": "assistant", "content": [{"type": "text", "text": ""}], "eot": False}) tokens, text, audio = audio_model(history, max_new_tokens=4096, temperature=0.7, repetition_penalty=1.05, do_sample=True) print(f"predict {text=}") audio = token2wav(audio, prompt_wav) audio_path = save_tmp_audio(audio, cache_dir) chatbot.append({"role": "assistant", "content": {"path": audio_path}}) history[-1]["content"].append({"type": "token", "token": tokens}) history[-1]["eot"] = True except Exception: print(traceback.format_exc()) gr.Warning(f"Some error happend, please try again.") return chatbot, history def _launch_demo(args, audio_model, token2wav): with gr.Blocks(delete_cache=(86400, 86400)) as demo: gr.Markdown("""
Step Audio 2 Demo
""") with gr.Row(): system_prompt = gr.Textbox( label="System Prompt", value="你的名字叫做小跃,是由阶跃星辰公司训练出来的语音大模型。\n你情感细腻,观察能力强,擅长分析用户的内容,并作出善解人意的回复,说话的过程中时刻注意用户的感受,富有同理心,提供多样的情绪价值。\n今天是2025年8月29日,星期五\n请用默认女声与用户交流。", lines=2 ) chatbot = gr.Chatbot( elem_id="chatbot", #avatar_images=["assets/user.png", "assets/assistant.png"], min_height=800, type="messages", ) history = gr.State([{"role": "system", "content": system_prompt.value}]) mic = gr.Audio(type="filepath") text = gr.Textbox(placeholder="Enter message ...") with gr.Row(): clean_btn = gr.Button("🧹 Clear History (清除历史)") regen_btn = gr.Button("🤔️ Regenerate (重试)") submit_btn = gr.Button("🚀 Submit") def on_submit(chatbot, history, mic, text): chatbot, history, error = add_message( chatbot, history, mic, text ) if error: gr.Warning(error) # 显示警告消息 return chatbot, history, None, None else: chatbot, history = predict(chatbot, history, audio_model, token2wav, args.prompt_wav, args.cache_dir) return chatbot, history, None, None submit_btn.click( fn=on_submit, inputs=[chatbot, history, mic, text], outputs=[chatbot, history, mic, text], concurrency_limit=4, concurrency_id="gpu_queue", ) clean_btn.click( fn=reset_state, inputs=[system_prompt], outputs=[chatbot, history], #show_progress=True, ) def regenerate(chatbot, history): while chatbot and chatbot[-1]["role"] == "assistant": chatbot.pop() while history and history[-1]["role"] == "assistant": print(f"discard {history[-1]}") history.pop() return predict(chatbot, history, audio_model, token2wav, args.prompt_wav, args.cache_dir) regen_btn.click( regenerate, [chatbot, history], [chatbot, history], #show_progress=True, concurrency_id="gpu_queue", ) demo.queue().launch( server_port=args.server_port, server_name=args.server_name, ) if __name__ == "__main__": import os from argparse import ArgumentParser from stepaudio2 import StepAudio2 from token2wav import Token2wav parser = ArgumentParser() parser.add_argument("--model-path", type=str, default='Step-Audio-2-mini', help="Model path.") parser.add_argument( "--server-port", type=int, default=7860, help="Demo server port." ) parser.add_argument( "--server-name", type=str, default="0.0.0.0", help="Demo server name." ) parser.add_argument( "--prompt-wav", type=str, default="assets/default_female.wav", help="Prompt wave for the assistant." ) parser.add_argument( "--cache-dir", type=str, default="/tmp/stepaudio2", help="Cache directory." ) args = parser.parse_args() os.environ["GRADIO_TEMP_DIR"] = args.cache_dir audio_model = StepAudio2(args.model_path) token2wav = Token2wav(f"{args.model_path}/token2wav") _launch_demo(args, audio_model, token2wav)